位置感知的发布/订阅

Guoliang Li, Yang Wang, Ting Wang, Jianhua Feng
{"title":"位置感知的发布/订阅","authors":"Guoliang Li, Yang Wang, Ting Wang, Jianhua Feng","doi":"10.1145/2487575.2487617","DOIUrl":null,"url":null,"abstract":"Location-based services have become widely available on mobile devices. Existing methods employ a pull model or user-initiated model, where a user issues a query to a server which replies with location-aware answers. To provide users with instant replies, a push model or server-initiated model is becoming an inevitable computing model in the next-generation location-based services. In the push model, subscribers register spatio-textual subscriptions to capture their interests, and publishers post spatio-textual messages. This calls for a high-performance location-aware publish/subscribe system to deliver publishers' messages to relevant subscribers.In this paper, we address the research challenges that arise in designing a location-aware publish/subscribe system. We propose an rtree based index structure by integrating textual descriptions into rtree nodes. We devise efficient filtering algorithms and develop effective pruning techniques to improve filtering efficiency. Experimental results show that our method achieves high performance. For example, our method can filter 500 tweets in a second for 10 million registered subscriptions on a commodity computer.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":"{\"title\":\"Location-aware publish/subscribe\",\"authors\":\"Guoliang Li, Yang Wang, Ting Wang, Jianhua Feng\",\"doi\":\"10.1145/2487575.2487617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Location-based services have become widely available on mobile devices. Existing methods employ a pull model or user-initiated model, where a user issues a query to a server which replies with location-aware answers. To provide users with instant replies, a push model or server-initiated model is becoming an inevitable computing model in the next-generation location-based services. In the push model, subscribers register spatio-textual subscriptions to capture their interests, and publishers post spatio-textual messages. This calls for a high-performance location-aware publish/subscribe system to deliver publishers' messages to relevant subscribers.In this paper, we address the research challenges that arise in designing a location-aware publish/subscribe system. We propose an rtree based index structure by integrating textual descriptions into rtree nodes. We devise efficient filtering algorithms and develop effective pruning techniques to improve filtering efficiency. Experimental results show that our method achieves high performance. For example, our method can filter 500 tweets in a second for 10 million registered subscriptions on a commodity computer.\",\"PeriodicalId\":20472,\"journal\":{\"name\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"106\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2487575.2487617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

摘要

基于位置的服务已经在移动设备上广泛使用。现有的方法采用拉模型或用户发起模型,其中用户向服务器发出查询,服务器使用位置感知的答案进行应答。为了向用户提供即时回复,推送模式或服务器发起模式将成为下一代位置服务的必然计算模式。在推送模型中,订阅者注册空间文本订阅来获取他们的兴趣,发布者发布空间文本消息。这需要一个高性能的位置感知发布/订阅系统来将发布者的消息传递给相关的订阅者。在本文中,我们解决了在设计位置感知发布/订阅系统时出现的研究挑战。通过将文本描述集成到r树节点中,提出了一种基于r树的索引结构。我们设计了高效的过滤算法,并开发了有效的修剪技术来提高过滤效率。实验结果表明,该方法具有较高的性能。例如,我们的方法可以在一秒钟内为一台商用计算机上的1000万注册订阅过滤500条tweet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Location-aware publish/subscribe
Location-based services have become widely available on mobile devices. Existing methods employ a pull model or user-initiated model, where a user issues a query to a server which replies with location-aware answers. To provide users with instant replies, a push model or server-initiated model is becoming an inevitable computing model in the next-generation location-based services. In the push model, subscribers register spatio-textual subscriptions to capture their interests, and publishers post spatio-textual messages. This calls for a high-performance location-aware publish/subscribe system to deliver publishers' messages to relevant subscribers.In this paper, we address the research challenges that arise in designing a location-aware publish/subscribe system. We propose an rtree based index structure by integrating textual descriptions into rtree nodes. We devise efficient filtering algorithms and develop effective pruning techniques to improve filtering efficiency. Experimental results show that our method achieves high performance. For example, our method can filter 500 tweets in a second for 10 million registered subscriptions on a commodity computer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A general bootstrap performance diagnostic Flexible and robust co-regularized multi-domain graph clustering Beyond myopic inference in big data pipelines Constrained stochastic gradient descent for large-scale least squares problem Inferring distant-time location in low-sampling-rate trajectories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1