大肠杆菌尿苷磷酸化酶的底物特异性。尿苷磷解中底物高同步构象的进一步证据

C. S. Alexeev, G. Sivets, T. Safonova, S. Mikhailov
{"title":"大肠杆菌尿苷磷酸化酶的底物特异性。尿苷磷解中底物高同步构象的进一步证据","authors":"C. S. Alexeev, G. Sivets, T. Safonova, S. Mikhailov","doi":"10.1080/15257770.2016.1223306","DOIUrl":null,"url":null,"abstract":"ABSTRACT Twenty five uridine analogues have been tested and compared with uridine with respect to their potency to bind to E. coli uridine phosphorylase. The kinetic constants of the phosphorolysis reaction of uridine derivatives modified at 2′-, 3′- and 5′-positions of the sugar moiety and 2-, 4-, 5- and 6-positions of the heterocyclic base were determined. The absence of the 2′- or 5′-hydroxyl group is not crucial for the successful binding and phosphorolysis. On the other hand, the absence of both the 2′- and 5′-hydroxyl groups leads to the loss of substrate binding to the enzyme. The same effect was observed when the 3′-hydroxyl group is absent, thus underlining the key role of this group. Our data shed some light on the mechanism of ribo- and 2′-deoxyribonucleoside discrimination by E. coli uridine phosphorylase and E. coli thymidine phosphorylase. A comparison of the kinetic results obtained in the present study with the available X-ray structures and analysis of hydrogen bonding in the enzyme-substrate complex demonstrates that uridine adopts an unusual high-syn conformation in the active site of uridine phosphorylase.","PeriodicalId":19306,"journal":{"name":"Nucleosides, Nucleotides and Nucleic Acids","volume":"13 1","pages":"107 - 121"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Substrate specificity of E. coli uridine phosphorylase. Further evidences of high-syn conformation of the substrate in uridine phosphorolysis\",\"authors\":\"C. S. Alexeev, G. Sivets, T. Safonova, S. Mikhailov\",\"doi\":\"10.1080/15257770.2016.1223306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Twenty five uridine analogues have been tested and compared with uridine with respect to their potency to bind to E. coli uridine phosphorylase. The kinetic constants of the phosphorolysis reaction of uridine derivatives modified at 2′-, 3′- and 5′-positions of the sugar moiety and 2-, 4-, 5- and 6-positions of the heterocyclic base were determined. The absence of the 2′- or 5′-hydroxyl group is not crucial for the successful binding and phosphorolysis. On the other hand, the absence of both the 2′- and 5′-hydroxyl groups leads to the loss of substrate binding to the enzyme. The same effect was observed when the 3′-hydroxyl group is absent, thus underlining the key role of this group. Our data shed some light on the mechanism of ribo- and 2′-deoxyribonucleoside discrimination by E. coli uridine phosphorylase and E. coli thymidine phosphorylase. A comparison of the kinetic results obtained in the present study with the available X-ray structures and analysis of hydrogen bonding in the enzyme-substrate complex demonstrates that uridine adopts an unusual high-syn conformation in the active site of uridine phosphorylase.\",\"PeriodicalId\":19306,\"journal\":{\"name\":\"Nucleosides, Nucleotides and Nucleic Acids\",\"volume\":\"13 1\",\"pages\":\"107 - 121\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleosides, Nucleotides and Nucleic Acids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15257770.2016.1223306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides, Nucleotides and Nucleic Acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15257770.2016.1223306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究了25种尿苷类似物与尿苷结合大肠杆菌尿苷磷酸化酶的效力。测定了糖基2′-、3′-和5′位以及杂环基2、4、5、6位修饰的尿苷衍生物的磷酸化反应动力学常数。2 ' -或5 ' -羟基的缺失对于成功结合和磷酸化并不是至关重要的。另一方面,2 ' -和5 ' -羟基的缺失导致底物与酶的结合丧失。当3 ' -羟基缺失时,观察到同样的效果,从而强调了该组的关键作用。我们的数据揭示了大肠杆菌尿苷磷酸化酶和胸苷磷酸化酶对核糖和2 ' -脱氧核糖核苷的识别机制。将本研究获得的动力学结果与现有的x射线结构和酶-底物复合物中氢键的分析进行比较,表明尿苷在尿苷磷酸化酶的活性位点采用了一种不同寻常的高同步构象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Substrate specificity of E. coli uridine phosphorylase. Further evidences of high-syn conformation of the substrate in uridine phosphorolysis
ABSTRACT Twenty five uridine analogues have been tested and compared with uridine with respect to their potency to bind to E. coli uridine phosphorylase. The kinetic constants of the phosphorolysis reaction of uridine derivatives modified at 2′-, 3′- and 5′-positions of the sugar moiety and 2-, 4-, 5- and 6-positions of the heterocyclic base were determined. The absence of the 2′- or 5′-hydroxyl group is not crucial for the successful binding and phosphorolysis. On the other hand, the absence of both the 2′- and 5′-hydroxyl groups leads to the loss of substrate binding to the enzyme. The same effect was observed when the 3′-hydroxyl group is absent, thus underlining the key role of this group. Our data shed some light on the mechanism of ribo- and 2′-deoxyribonucleoside discrimination by E. coli uridine phosphorylase and E. coli thymidine phosphorylase. A comparison of the kinetic results obtained in the present study with the available X-ray structures and analysis of hydrogen bonding in the enzyme-substrate complex demonstrates that uridine adopts an unusual high-syn conformation in the active site of uridine phosphorylase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nucleoside dimers analogs containing floxuridine and thymidine with unnatural linker groups: synthesis and cancer line studies. Part III Multispectroscopic studies on the interaction of a copper(ii) complex of ibuprofen drug with calf thymus DNA Substrate specificity of E. coli uridine phosphorylase. Further evidences of high-syn conformation of the substrate in uridine phosphorolysis Intermolecular interaction of nickel (ii) phthalocyanine tetrasulfonic acid tetrasodium salt with bovine serum albumin: A multi-technique study Synthesis, stereochemical characterization, and antimicrobial evaluation of a potentially nonnephrotoxic 3′-C-acethydrazide puromycin analog
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1