1455: RLY-4008,一种针对FGFR2驱动的癌症的新型精确疗法,旨在有效和选择性地抑制FGFR2和FGFR2耐药突变

Jessica B Casaletto, Dejan Maglic, B. Touré, Alex Taylor, Heike Schoenherr, Brandi Hudson, Kamil Bruderek, Songping Zhao, Patrick J O'Hearn, Nastaran Gerami-Moayed, D. Moustakas, R. Valverde, Lindsey Foster, H. Gunaydin, P. Ayaz, D. Sharon, D. Bergstrom, J. Watters
{"title":"1455: RLY-4008,一种针对FGFR2驱动的癌症的新型精确疗法,旨在有效和选择性地抑制FGFR2和FGFR2耐药突变","authors":"Jessica B Casaletto, Dejan Maglic, B. Touré, Alex Taylor, Heike Schoenherr, Brandi Hudson, Kamil Bruderek, Songping Zhao, Patrick J O'Hearn, Nastaran Gerami-Moayed, D. Moustakas, R. Valverde, Lindsey Foster, H. Gunaydin, P. Ayaz, D. Sharon, D. Bergstrom, J. Watters","doi":"10.1158/1538-7445.AM2021-1455","DOIUrl":null,"url":null,"abstract":"FGFR2 fusions, amplifications, and mutations are oncogenic drivers that occur across multiple tumor types. Clinical efficacy observed with pan-FGFR inhibitors has validated the driver status of FGFR2 in FGFR2 fusion-positive intrahepatic cholangiocarcinoma (ICC), however, FGFR1-mediated toxicities (hyperphosphatemia, tissue mineralization) and the emergence of on-target FGFR2 resistance mutations limit the efficacy of pan-FGFR inhibitors. To overcome these limitations, we designed RLY-4008, a potent and highly selective, FGFR2 inhibitor. Despite significant investment in traditional structure-based drug design, selective targeting of FGFR2 has not been achieved. We leveraged differences in conformational dynamics between FGFR2 and other FGFR isoforms observed through molecular dynamics simulations to enable the design of RLY-4008. RLY-4008 inhibits FGFR2 with low nanomolar potency and demonstrates > 200-fold selectivity over FGFR1, and > 80- and > 5000-fold selectivity over FGFR3 and FGFR4, respectively, in biochemical assays. Additionally, RLY-4008 demonstrates high kinome selectivity for FGFR2 against a panel of > 400 human kinases. RLY-4008 has strong activity against primary and acquired FGFR2 resistance mutations in cellular assays, and potent antiproliferative effects on FGFR2-altered human tumor cell lines. In vivo, RLY-4008 demonstrates dose-dependent FGFR2 inhibition and induces regression in multiple human xenograft tumor models, including FGFR2 fusion-positive ICC, gastric, and lung cancers, FGFR2-amplified gastric cancer, and FGFR2-mutant endometrial cancer. Strikingly, RLY-4008 induces regression in an FGFR2 fusion-positive ICC model harboring the FGFR2V564F gatekeeper mutation and an endometrial cancer model harboring the FGFR2N549K mutation, two mutations that drive clinical progression on current pan-FGFR inhibitors. In the FGFR2V564F model, pan-FGFR inhibitors are ineffective, even at maximally tolerated doses. Notably, treatment of these tumors with RLY-4008 induces rapid regression and restores body weight. In rat and dog toxicology studies, RLY-4008 is well tolerated and is not associated with hyperphosphatemia or tissue mineralization at exposures significantly above those required to induce regression in all models. In contrast to pan-FGFR inhibitors, RLY-4008 is highly selective for FGFR2 and demonstrates strong activity against FGFR2 resistance mutations, suggesting that RLY-4008 may have broader therapeutic potential via preventing and overcoming therapeutic resistance. Together, these data and the favorable pharmaceutical properties of RLY-4008 strongly support its clinical development in FGFR2-altered tumors. Citation Format: Jessica Casaletto, Dejan Maglic, B. Barry Toure, Alex Taylor, Heike Schoenherr, Brandi Hudson, Kamil Bruderek, Songping Zhao, Patrick O9Hearn, Nastaran Gerami-Moayed, Demetri Moustakas, Roberto Valverde, Lindsey Foster, Hakan Gunaydin, Pelin Ayaz, Dina Sharon, Donald Bergstrom, James Watters. RLY-4008, a novel precision therapy for FGFR2-driven cancers designed to potently and selectively inhibit FGFR2 and FGFR2 resistance mutations [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1455.","PeriodicalId":12258,"journal":{"name":"Experimental and Molecular Therapeutics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Abstract 1455: RLY-4008, a novel precision therapy for FGFR2-driven cancers designed to potently and selectively inhibit FGFR2 and FGFR2 resistance mutations\",\"authors\":\"Jessica B Casaletto, Dejan Maglic, B. Touré, Alex Taylor, Heike Schoenherr, Brandi Hudson, Kamil Bruderek, Songping Zhao, Patrick J O'Hearn, Nastaran Gerami-Moayed, D. Moustakas, R. Valverde, Lindsey Foster, H. Gunaydin, P. Ayaz, D. Sharon, D. Bergstrom, J. Watters\",\"doi\":\"10.1158/1538-7445.AM2021-1455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FGFR2 fusions, amplifications, and mutations are oncogenic drivers that occur across multiple tumor types. Clinical efficacy observed with pan-FGFR inhibitors has validated the driver status of FGFR2 in FGFR2 fusion-positive intrahepatic cholangiocarcinoma (ICC), however, FGFR1-mediated toxicities (hyperphosphatemia, tissue mineralization) and the emergence of on-target FGFR2 resistance mutations limit the efficacy of pan-FGFR inhibitors. To overcome these limitations, we designed RLY-4008, a potent and highly selective, FGFR2 inhibitor. Despite significant investment in traditional structure-based drug design, selective targeting of FGFR2 has not been achieved. We leveraged differences in conformational dynamics between FGFR2 and other FGFR isoforms observed through molecular dynamics simulations to enable the design of RLY-4008. RLY-4008 inhibits FGFR2 with low nanomolar potency and demonstrates > 200-fold selectivity over FGFR1, and > 80- and > 5000-fold selectivity over FGFR3 and FGFR4, respectively, in biochemical assays. Additionally, RLY-4008 demonstrates high kinome selectivity for FGFR2 against a panel of > 400 human kinases. RLY-4008 has strong activity against primary and acquired FGFR2 resistance mutations in cellular assays, and potent antiproliferative effects on FGFR2-altered human tumor cell lines. In vivo, RLY-4008 demonstrates dose-dependent FGFR2 inhibition and induces regression in multiple human xenograft tumor models, including FGFR2 fusion-positive ICC, gastric, and lung cancers, FGFR2-amplified gastric cancer, and FGFR2-mutant endometrial cancer. Strikingly, RLY-4008 induces regression in an FGFR2 fusion-positive ICC model harboring the FGFR2V564F gatekeeper mutation and an endometrial cancer model harboring the FGFR2N549K mutation, two mutations that drive clinical progression on current pan-FGFR inhibitors. In the FGFR2V564F model, pan-FGFR inhibitors are ineffective, even at maximally tolerated doses. Notably, treatment of these tumors with RLY-4008 induces rapid regression and restores body weight. In rat and dog toxicology studies, RLY-4008 is well tolerated and is not associated with hyperphosphatemia or tissue mineralization at exposures significantly above those required to induce regression in all models. In contrast to pan-FGFR inhibitors, RLY-4008 is highly selective for FGFR2 and demonstrates strong activity against FGFR2 resistance mutations, suggesting that RLY-4008 may have broader therapeutic potential via preventing and overcoming therapeutic resistance. Together, these data and the favorable pharmaceutical properties of RLY-4008 strongly support its clinical development in FGFR2-altered tumors. Citation Format: Jessica Casaletto, Dejan Maglic, B. Barry Toure, Alex Taylor, Heike Schoenherr, Brandi Hudson, Kamil Bruderek, Songping Zhao, Patrick O9Hearn, Nastaran Gerami-Moayed, Demetri Moustakas, Roberto Valverde, Lindsey Foster, Hakan Gunaydin, Pelin Ayaz, Dina Sharon, Donald Bergstrom, James Watters. RLY-4008, a novel precision therapy for FGFR2-driven cancers designed to potently and selectively inhibit FGFR2 and FGFR2 resistance mutations [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1455.\",\"PeriodicalId\":12258,\"journal\":{\"name\":\"Experimental and Molecular Therapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental and Molecular Therapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/1538-7445.AM2021-1455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Molecular Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/1538-7445.AM2021-1455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

FGFR2融合、扩增和突变是多种肿瘤类型的致癌驱动因素。使用泛fgfr抑制剂观察到的临床疗效证实了FGFR2在FGFR2融合阳性肝内胆管癌(ICC)中的驱动地位,然而,fgfr1介导的毒性(高磷血症、组织矿化)和靶向FGFR2耐药突变的出现限制了泛fgfr抑制剂的疗效。为了克服这些限制,我们设计了RLY-4008,一种有效的高选择性FGFR2抑制剂。尽管在传统的基于结构的药物设计上投入了大量资金,但FGFR2的选择性靶向尚未实现。我们利用分子动力学模拟观察到的FGFR2和其他FGFR异构体之间构象动力学的差异来设计RLY-4008。RLY-4008对FGFR2具有低纳摩尔的抑制作用,在生化分析中,RLY-4008对FGFR1的选择性为200倍以上,对FGFR3和FGFR4的选择性分别为80倍和5000倍以上。此外,RLY-4008对超过400种人类激酶显示出FGFR2的高激酶组选择性。在细胞检测中,RLY-4008对原代和获得性FGFR2耐药突变具有很强的活性,对FGFR2改变的人肿瘤细胞系具有强大的抗增殖作用。在体内,RLY-4008在多种人类异种移植肿瘤模型(包括FGFR2融合阳性ICC、胃癌和肺癌、FGFR2扩增型胃癌和FGFR2突变型子宫内膜癌)中表现出剂量依赖性的FGFR2抑制作用,并诱导肿瘤消退。引人注目的是,RLY-4008在含有FGFR2V564F门房突变的FGFR2融合阳性ICC模型和含有FGFR2N549K突变的子宫内膜癌模型中诱导消退,这两种突变驱动当前泛fgfr抑制剂的临床进展。在FGFR2V564F模型中,即使在最大耐受剂量下,泛fgfr抑制剂也是无效的。值得注意的是,用RLY-4008治疗这些肿瘤可诱导快速消退并恢复体重。在大鼠和狗的毒理学研究中,RLY-4008耐受性良好,在所有模型中,暴露量明显高于诱导回归所需的暴露量时,与高磷血症或组织矿化无关。与泛fgfr抑制剂相比,RLY-4008对FGFR2具有高度选择性,并且对FGFR2耐药突变具有很强的活性,这表明RLY-4008可能通过预防和克服治疗耐药而具有更广泛的治疗潜力。总之,这些数据和RLY-4008良好的药物特性有力地支持了其在fgfr2改变肿瘤中的临床开发。引文格式:Jessica Casaletto, Dejan Maglic, B. Barry Toure, Alex Taylor, Heike Schoenherr, Brandi Hudson, Kamil Bruderek, Songping Zhao, Patrick O9Hearn, Nastaran Gerami-Moayed, Demetri Moustakas, Roberto Valverde, Lindsey Foster, Hakan Gunaydin, Pelin Ayaz, Dina Sharon, Donald Bergstrom, James Watters。RLY-4008,一种针对FGFR2驱动的癌症的新型精确疗法,旨在有效和选择性地抑制FGFR2和FGFR2耐药突变[摘要]。见:美国癌症研究协会2021年年会论文集;2021年4月10日至15日和5月17日至21日。费城(PA): AACR;癌症杂志,2021;81(13 -增刊):1455。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abstract 1455: RLY-4008, a novel precision therapy for FGFR2-driven cancers designed to potently and selectively inhibit FGFR2 and FGFR2 resistance mutations
FGFR2 fusions, amplifications, and mutations are oncogenic drivers that occur across multiple tumor types. Clinical efficacy observed with pan-FGFR inhibitors has validated the driver status of FGFR2 in FGFR2 fusion-positive intrahepatic cholangiocarcinoma (ICC), however, FGFR1-mediated toxicities (hyperphosphatemia, tissue mineralization) and the emergence of on-target FGFR2 resistance mutations limit the efficacy of pan-FGFR inhibitors. To overcome these limitations, we designed RLY-4008, a potent and highly selective, FGFR2 inhibitor. Despite significant investment in traditional structure-based drug design, selective targeting of FGFR2 has not been achieved. We leveraged differences in conformational dynamics between FGFR2 and other FGFR isoforms observed through molecular dynamics simulations to enable the design of RLY-4008. RLY-4008 inhibits FGFR2 with low nanomolar potency and demonstrates > 200-fold selectivity over FGFR1, and > 80- and > 5000-fold selectivity over FGFR3 and FGFR4, respectively, in biochemical assays. Additionally, RLY-4008 demonstrates high kinome selectivity for FGFR2 against a panel of > 400 human kinases. RLY-4008 has strong activity against primary and acquired FGFR2 resistance mutations in cellular assays, and potent antiproliferative effects on FGFR2-altered human tumor cell lines. In vivo, RLY-4008 demonstrates dose-dependent FGFR2 inhibition and induces regression in multiple human xenograft tumor models, including FGFR2 fusion-positive ICC, gastric, and lung cancers, FGFR2-amplified gastric cancer, and FGFR2-mutant endometrial cancer. Strikingly, RLY-4008 induces regression in an FGFR2 fusion-positive ICC model harboring the FGFR2V564F gatekeeper mutation and an endometrial cancer model harboring the FGFR2N549K mutation, two mutations that drive clinical progression on current pan-FGFR inhibitors. In the FGFR2V564F model, pan-FGFR inhibitors are ineffective, even at maximally tolerated doses. Notably, treatment of these tumors with RLY-4008 induces rapid regression and restores body weight. In rat and dog toxicology studies, RLY-4008 is well tolerated and is not associated with hyperphosphatemia or tissue mineralization at exposures significantly above those required to induce regression in all models. In contrast to pan-FGFR inhibitors, RLY-4008 is highly selective for FGFR2 and demonstrates strong activity against FGFR2 resistance mutations, suggesting that RLY-4008 may have broader therapeutic potential via preventing and overcoming therapeutic resistance. Together, these data and the favorable pharmaceutical properties of RLY-4008 strongly support its clinical development in FGFR2-altered tumors. Citation Format: Jessica Casaletto, Dejan Maglic, B. Barry Toure, Alex Taylor, Heike Schoenherr, Brandi Hudson, Kamil Bruderek, Songping Zhao, Patrick O9Hearn, Nastaran Gerami-Moayed, Demetri Moustakas, Roberto Valverde, Lindsey Foster, Hakan Gunaydin, Pelin Ayaz, Dina Sharon, Donald Bergstrom, James Watters. RLY-4008, a novel precision therapy for FGFR2-driven cancers designed to potently and selectively inhibit FGFR2 and FGFR2 resistance mutations [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1455.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstract 1341: Inhibiting the nuclear exporter XPO1 and the antiapoptotic factor BCL2 is synergistic in XPO1 and SF3B1 mutant hematologic malignancies Abstract 1449: A live-cell imaging approach for assessing efficacy of immune-targeting therapies using high content imaging and analysis of 3Din vitrotumor models Abstract 1189: Association of RAS pathway mutations with lower CD8+ T cell infiltration and 2-year survival rate in Stage-III colorectal adenocarcinoma patients Abstract 1472: Novel EGFR WT sparing, HER2 selective inhibitors for the treatment of HER2 exon 20 insertion driven tumors address a clear unmet medical need Abstract 988: Targeting immunological and apoptotic cell death to improve therapeutic efficacy in melanoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1