基于莫尔斯电势的s波Triton散射相移

Anil Khachi, S. Awasthi, O. Sastri, L R Amruth Kumar
{"title":"基于莫尔斯电势的s波Triton散射相移","authors":"Anil Khachi, S. Awasthi, O. Sastri, L R Amruth Kumar","doi":"10.15415/jnp.2021.91014","DOIUrl":null,"url":null,"abstract":"In this paper, the phase-shifts for neutron-dueteron (n-d) scattering have been determined using the molecular Morse potential as theoretical model of interaction. The Triton (n-d) 2S1/2 ground state initially has been chosen as -7.61 MeV to determine the model parameters using variational Monte-Carlo technique in combination with matrix methods numerical approach to solving the time independent Schrodinger equation (TISE). The obtained potential is incorporated into the phase function equation, which is solved using Runge-Kutta (RK) 4,5 order technique, to calculate the phaseshifts at various lab energies below 15 MeV, for which experimental data is available. The results have been compared with those obtained using another molecular potential named Manning-Rosen (MR) and have been observed to fare better. Finally, the Triton ground state has been chosen as its binding energy (BE), given by -8.481795 MeV, as determined from experimental atomic mass evaluation data and the calculations are repeated. It has been found that these phase-shifts from BE data are slightly better matched with experimental ones as compared to those obtained using -7.61 MeV ground state for Triton (n-d two-body system) modeled using Morse potential.","PeriodicalId":16534,"journal":{"name":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Triton Scattering Phase-Shifts for S-wave using Morse Potential\",\"authors\":\"Anil Khachi, S. Awasthi, O. Sastri, L R Amruth Kumar\",\"doi\":\"10.15415/jnp.2021.91014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the phase-shifts for neutron-dueteron (n-d) scattering have been determined using the molecular Morse potential as theoretical model of interaction. The Triton (n-d) 2S1/2 ground state initially has been chosen as -7.61 MeV to determine the model parameters using variational Monte-Carlo technique in combination with matrix methods numerical approach to solving the time independent Schrodinger equation (TISE). The obtained potential is incorporated into the phase function equation, which is solved using Runge-Kutta (RK) 4,5 order technique, to calculate the phaseshifts at various lab energies below 15 MeV, for which experimental data is available. The results have been compared with those obtained using another molecular potential named Manning-Rosen (MR) and have been observed to fare better. Finally, the Triton ground state has been chosen as its binding energy (BE), given by -8.481795 MeV, as determined from experimental atomic mass evaluation data and the calculations are repeated. It has been found that these phase-shifts from BE data are slightly better matched with experimental ones as compared to those obtained using -7.61 MeV ground state for Triton (n-d two-body system) modeled using Morse potential.\",\"PeriodicalId\":16534,\"journal\":{\"name\":\"Journal of Nuclear Physics, Material Sciences, Radiation and Applications\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Physics, Material Sciences, Radiation and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15415/jnp.2021.91014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15415/jnp.2021.91014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文用分子莫尔斯势作为相互作用的理论模型,确定了中子-氘核(n-d)散射的相移。Triton (n-d) 2S1/2基态初始值为-7.61 MeV,采用变分蒙特卡罗技术结合矩阵方法求解时间无关薛定谔方程(TISE),确定模型参数。将得到的势代入相函数方程,利用龙格-库塔(RK) 4,5阶技术求解相函数方程,计算出15 MeV以下不同实验室能量下的相移,得到实验数据。结果已经与使用另一种称为曼宁-罗森(MR)的分子势得到的结果进行了比较,并且观察到效果更好。最后,选择Triton基态作为它的结合能(BE),由实验原子质量评价数据得到-8.481795 MeV,并进行了重复计算。与使用莫尔斯势模型模拟Triton (n-d两体系统)-7.61 MeV基态得到的相移相比,BE数据的相移与实验相移的匹配程度稍好一些。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Triton Scattering Phase-Shifts for S-wave using Morse Potential
In this paper, the phase-shifts for neutron-dueteron (n-d) scattering have been determined using the molecular Morse potential as theoretical model of interaction. The Triton (n-d) 2S1/2 ground state initially has been chosen as -7.61 MeV to determine the model parameters using variational Monte-Carlo technique in combination with matrix methods numerical approach to solving the time independent Schrodinger equation (TISE). The obtained potential is incorporated into the phase function equation, which is solved using Runge-Kutta (RK) 4,5 order technique, to calculate the phaseshifts at various lab energies below 15 MeV, for which experimental data is available. The results have been compared with those obtained using another molecular potential named Manning-Rosen (MR) and have been observed to fare better. Finally, the Triton ground state has been chosen as its binding energy (BE), given by -8.481795 MeV, as determined from experimental atomic mass evaluation data and the calculations are repeated. It has been found that these phase-shifts from BE data are slightly better matched with experimental ones as compared to those obtained using -7.61 MeV ground state for Triton (n-d two-body system) modeled using Morse potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Radii of Thorium Nuclides Lying in Between the Drip Lines Charge Radius And Neutron Skin Thickness Of Platinum And Osmium Isotopes Near The Nuclear Drip Lines Evaluation of Natural Radioactivity Levels and Exhalation rate of 222Rn and 220Rn in the Soil Samples from the Kuthiran Hills, Kerala, India Deformation Effect on Proton Bubble Structure in N = 28 Isotones Phase Shift Analysis for Neutron-Alpha Elastic Scattering Using Phase Function Method with Local Gaussian Potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1