神经分层去偏见推荐

AI Open Pub Date : 2022-08-15 DOI:10.48550/arXiv.2208.07281
Quanyu Dai, Zhenhua Dong, Xu Chen
{"title":"神经分层去偏见推荐","authors":"Quanyu Dai, Zhenhua Dong, Xu Chen","doi":"10.48550/arXiv.2208.07281","DOIUrl":null,"url":null,"abstract":"Debiased recommender models have recently attracted increasing attention from the academic and industry communities. Existing models are mostly based on the technique of inverse propensity score (IPS). However, in the recommendation domain, IPS can be hard to estimate given the sparse and noisy nature of the observed user-item exposure data. To alleviate this problem, in this paper, we assume that the user preference can be dominated by a small amount of latent factors, and propose to cluster the users for computing more accurate IPS via increasing the exposure densities. Basically, such method is similar with the spirit of stratification models in applied statistics. However, unlike previous heuristic stratification strategy, we learn the cluster criterion by presenting the users with low ranking embeddings, which are future shared with the user representations in the recommender model. At last, we find that our model has strong connections with the previous two types of debiased recommender models. We conduct extensive experiments based on real-world datasets to demonstrate the effectiveness of the proposed method.","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"7 1","pages":"213-217"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Debiased Recommendation with Neural Stratification\",\"authors\":\"Quanyu Dai, Zhenhua Dong, Xu Chen\",\"doi\":\"10.48550/arXiv.2208.07281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Debiased recommender models have recently attracted increasing attention from the academic and industry communities. Existing models are mostly based on the technique of inverse propensity score (IPS). However, in the recommendation domain, IPS can be hard to estimate given the sparse and noisy nature of the observed user-item exposure data. To alleviate this problem, in this paper, we assume that the user preference can be dominated by a small amount of latent factors, and propose to cluster the users for computing more accurate IPS via increasing the exposure densities. Basically, such method is similar with the spirit of stratification models in applied statistics. However, unlike previous heuristic stratification strategy, we learn the cluster criterion by presenting the users with low ranking embeddings, which are future shared with the user representations in the recommender model. At last, we find that our model has strong connections with the previous two types of debiased recommender models. We conduct extensive experiments based on real-world datasets to demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":100068,\"journal\":{\"name\":\"AI Open\",\"volume\":\"7 1\",\"pages\":\"213-217\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.07281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.07281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

去偏见推荐模型最近引起了学术界和工业界越来越多的关注。现有的模型大多基于逆倾向评分(IPS)技术。然而,在推荐领域,考虑到观察到的用户项目暴露数据的稀疏和噪声性质,IPS很难估计。为了缓解这一问题,本文假设用户偏好可以被少量潜在因素所支配,并提出通过增加暴露密度对用户进行聚类以计算更准确的IPS。这种方法基本上与应用统计学中的分层模型精神相似。然而,与之前的启发式分层策略不同,我们通过向用户呈现低排名嵌入来学习聚类标准,这些嵌入将与推荐模型中的用户表示共享。最后,我们发现我们的模型与前两类去偏见推荐模型有很强的联系。我们在真实世界的数据集上进行了大量的实验,以证明所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Debiased Recommendation with Neural Stratification
Debiased recommender models have recently attracted increasing attention from the academic and industry communities. Existing models are mostly based on the technique of inverse propensity score (IPS). However, in the recommendation domain, IPS can be hard to estimate given the sparse and noisy nature of the observed user-item exposure data. To alleviate this problem, in this paper, we assume that the user preference can be dominated by a small amount of latent factors, and propose to cluster the users for computing more accurate IPS via increasing the exposure densities. Basically, such method is similar with the spirit of stratification models in applied statistics. However, unlike previous heuristic stratification strategy, we learn the cluster criterion by presenting the users with low ranking embeddings, which are future shared with the user representations in the recommender model. At last, we find that our model has strong connections with the previous two types of debiased recommender models. We conduct extensive experiments based on real-world datasets to demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
期刊最新文献
GPT understands, too Adaptive negative representations for graph contrastive learning PM2.5 forecasting under distribution shift: A graph learning approach Enhancing neural network classification using fractional-order activation functions CPT: Colorful Prompt Tuning for pre-trained vision-language models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1