{"title":"依赖图上的路由:一种无死锁高性能路由的新方法","authors":"Jens Domke, T. Hoefler, S. Matsuoka","doi":"10.1145/2907294.2907313","DOIUrl":null,"url":null,"abstract":"Lossless interconnection networks are omnipresent in high performance computing systems, data centers and network-on-chip architectures. Such networks require efficient and deadlock-free routing functions to utilize the available hardware. Topology-aware routing functions become increasingly inapplicable, due to irregular topologies, which either are irregular by design or as a result of hardware failures. Existing topology-agnostic routing methods either suffer from poor load balancing or are not bounded in the number of virtual channels needed to resolve deadlocks in the routing tables. We propose a novel topology-agnostic routing approach which implicitly avoids deadlocks during the path calculation instead of solving both problems separately. We present a model implementation, called Nue, of a destination-based and oblivious routing function. Nue routing heuristically optimizes the load balancing while enforcing deadlock-freedom without exceeding a given number of virtual channels, which we demonstrate based on the InfiniBand architecture.","PeriodicalId":20515,"journal":{"name":"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Routing on the Dependency Graph: A New Approach to Deadlock-Free High-Performance Routing\",\"authors\":\"Jens Domke, T. Hoefler, S. Matsuoka\",\"doi\":\"10.1145/2907294.2907313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lossless interconnection networks are omnipresent in high performance computing systems, data centers and network-on-chip architectures. Such networks require efficient and deadlock-free routing functions to utilize the available hardware. Topology-aware routing functions become increasingly inapplicable, due to irregular topologies, which either are irregular by design or as a result of hardware failures. Existing topology-agnostic routing methods either suffer from poor load balancing or are not bounded in the number of virtual channels needed to resolve deadlocks in the routing tables. We propose a novel topology-agnostic routing approach which implicitly avoids deadlocks during the path calculation instead of solving both problems separately. We present a model implementation, called Nue, of a destination-based and oblivious routing function. Nue routing heuristically optimizes the load balancing while enforcing deadlock-freedom without exceeding a given number of virtual channels, which we demonstrate based on the InfiniBand architecture.\",\"PeriodicalId\":20515,\"journal\":{\"name\":\"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2907294.2907313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2907294.2907313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Routing on the Dependency Graph: A New Approach to Deadlock-Free High-Performance Routing
Lossless interconnection networks are omnipresent in high performance computing systems, data centers and network-on-chip architectures. Such networks require efficient and deadlock-free routing functions to utilize the available hardware. Topology-aware routing functions become increasingly inapplicable, due to irregular topologies, which either are irregular by design or as a result of hardware failures. Existing topology-agnostic routing methods either suffer from poor load balancing or are not bounded in the number of virtual channels needed to resolve deadlocks in the routing tables. We propose a novel topology-agnostic routing approach which implicitly avoids deadlocks during the path calculation instead of solving both problems separately. We present a model implementation, called Nue, of a destination-based and oblivious routing function. Nue routing heuristically optimizes the load balancing while enforcing deadlock-freedom without exceeding a given number of virtual channels, which we demonstrate based on the InfiniBand architecture.