基于聚类的制造业大数据系统数据过滤

IF 2.6 2区 工程技术 Q2 ENGINEERING, INDUSTRIAL Journal of Quality Technology Pub Date : 2021-03-05 DOI:10.1080/00224065.2021.1889420
Yifu Li, Xinwei Deng, Shan Ba, W. Myers, William A. Brenneman, Steve J. Lange, Ronald Zink, R. Jin
{"title":"基于聚类的制造业大数据系统数据过滤","authors":"Yifu Li, Xinwei Deng, Shan Ba, W. Myers, William A. Brenneman, Steve J. Lange, Ronald Zink, R. Jin","doi":"10.1080/00224065.2021.1889420","DOIUrl":null,"url":null,"abstract":"Abstract A manufacturing system collects big and heterogeneous data for tasks such as product quality modeling and data-driven decision-making. However, as the size of data grows, timely and effective data utilization becomes challenging. We propose an unsupervised data filtering method to reduce manufacturing big data sets with multi-variate continuous variables into informative small data sets. Furthermore, to determine the appropriate proportion of data to be filtered, we propose a filtering information criterion (FIC) to balance the tradeoff between the filtered data size and the information preserved. The case study of a babycare manufacturing and a simulation study have shown the effectiveness of the proposed method.","PeriodicalId":54769,"journal":{"name":"Journal of Quality Technology","volume":"152 1","pages":"290 - 302"},"PeriodicalIF":2.6000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Cluster-based data filtering for manufacturing big data systems\",\"authors\":\"Yifu Li, Xinwei Deng, Shan Ba, W. Myers, William A. Brenneman, Steve J. Lange, Ronald Zink, R. Jin\",\"doi\":\"10.1080/00224065.2021.1889420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A manufacturing system collects big and heterogeneous data for tasks such as product quality modeling and data-driven decision-making. However, as the size of data grows, timely and effective data utilization becomes challenging. We propose an unsupervised data filtering method to reduce manufacturing big data sets with multi-variate continuous variables into informative small data sets. Furthermore, to determine the appropriate proportion of data to be filtered, we propose a filtering information criterion (FIC) to balance the tradeoff between the filtered data size and the information preserved. The case study of a babycare manufacturing and a simulation study have shown the effectiveness of the proposed method.\",\"PeriodicalId\":54769,\"journal\":{\"name\":\"Journal of Quality Technology\",\"volume\":\"152 1\",\"pages\":\"290 - 302\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quality Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00224065.2021.1889420\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00224065.2021.1889420","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 8

摘要

制造系统收集大量异构数据,用于产品质量建模和数据驱动决策等任务。然而,随着数据规模的增长,及时有效地利用数据变得具有挑战性。提出了一种无监督数据过滤方法,将具有多变量连续变量的制造业大数据集简化为信息量大的小数据集。此外,为了确定要过滤的数据的适当比例,我们提出了一个过滤信息标准(FIC)来平衡过滤后的数据大小和保留的信息之间的权衡。通过对某婴儿护理用品生产企业的实例研究和仿真研究,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cluster-based data filtering for manufacturing big data systems
Abstract A manufacturing system collects big and heterogeneous data for tasks such as product quality modeling and data-driven decision-making. However, as the size of data grows, timely and effective data utilization becomes challenging. We propose an unsupervised data filtering method to reduce manufacturing big data sets with multi-variate continuous variables into informative small data sets. Furthermore, to determine the appropriate proportion of data to be filtered, we propose a filtering information criterion (FIC) to balance the tradeoff between the filtered data size and the information preserved. The case study of a babycare manufacturing and a simulation study have shown the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Quality Technology
Journal of Quality Technology 管理科学-工程:工业
CiteScore
5.20
自引率
4.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: The objective of Journal of Quality Technology is to contribute to the technical advancement of the field of quality technology by publishing papers that emphasize the practical applicability of new techniques, instructive examples of the operation of existing techniques and results of historical researches. Expository, review, and tutorial papers are also acceptable if they are written in a style suitable for practicing engineers. Sample our Mathematics & Statistics journals, sign in here to start your FREE access for 14 days
期刊最新文献
SpTe2M: An R package for nonparametric modeling and monitoring of spatiotemporal data Spatial modeling and monitoring considering long-range dependence A change-point–based control chart for detecting sparse mean changes in high-dimensional heteroscedastic data Best practices for multi- and mixed-level supersaturated designs Sequential Latin hypercube design for two-layer computer simulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1