Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil Cho, Y. Paek
{"title":"CRCount:指针无效与引用计数,以减轻使用后免费在遗留C/ c++","authors":"Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil Cho, Y. Paek","doi":"10.14722/ndss.2019.23541","DOIUrl":null,"url":null,"abstract":"Pointer invalidation has been a popular approach adopted in many recent studies to mitigate use-after-free errors. The approach can be divided largely into two different schemes: explicit invalidation and implicit invalidation. The former aims to eradicate the root cause of use-after-free errors by explicitly invalidating every dangling pointer. In contrast, the latter aims to prevent dangling pointers by freeing an object only if there is no pointer referring to it. A downside of the explicit scheme is that it is expensive, as it demands high-cost algorithms or a large amount of space to maintain up-to-date lists of pointer locations linking to each object. Implicit invalidation is more efficient in that even without any explicit effort, it can eliminate dangling pointers by leaving objects undeleted until all the links between the objects and their referring pointers vanish by themselves during program execution. However, such an argument only holds if the scheme knows exactly when each link is created and deleted. Reference counting is a traditional method to determine the existence of reference links between objects and pointers. Unfortunately, impeccable reference counting for legacy C/C++ code is very difficult and expensive to achieve in practice, mainly because of the type unsafe operations in the code. In this paper, we present a solution, called CRCount, to the use-after-free problem in legacy C/C++. For effective and efficient problem solving, CRCount is armed with the pointer footprinting technique that enables us to compute, with high accuracy, the reference count of every object referred to by the pointers in the legacy code. Our experiments demonstrate that CRCount mitigates the useafter-free errors with a lower performance-wise and space-wise overhead than the existing pointer invalidation solutions.","PeriodicalId":20444,"journal":{"name":"Proceedings 2019 Network and Distributed System Security Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-after-free in Legacy C/C++\",\"authors\":\"Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil Cho, Y. Paek\",\"doi\":\"10.14722/ndss.2019.23541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pointer invalidation has been a popular approach adopted in many recent studies to mitigate use-after-free errors. The approach can be divided largely into two different schemes: explicit invalidation and implicit invalidation. The former aims to eradicate the root cause of use-after-free errors by explicitly invalidating every dangling pointer. In contrast, the latter aims to prevent dangling pointers by freeing an object only if there is no pointer referring to it. A downside of the explicit scheme is that it is expensive, as it demands high-cost algorithms or a large amount of space to maintain up-to-date lists of pointer locations linking to each object. Implicit invalidation is more efficient in that even without any explicit effort, it can eliminate dangling pointers by leaving objects undeleted until all the links between the objects and their referring pointers vanish by themselves during program execution. However, such an argument only holds if the scheme knows exactly when each link is created and deleted. Reference counting is a traditional method to determine the existence of reference links between objects and pointers. Unfortunately, impeccable reference counting for legacy C/C++ code is very difficult and expensive to achieve in practice, mainly because of the type unsafe operations in the code. In this paper, we present a solution, called CRCount, to the use-after-free problem in legacy C/C++. For effective and efficient problem solving, CRCount is armed with the pointer footprinting technique that enables us to compute, with high accuracy, the reference count of every object referred to by the pointers in the legacy code. Our experiments demonstrate that CRCount mitigates the useafter-free errors with a lower performance-wise and space-wise overhead than the existing pointer invalidation solutions.\",\"PeriodicalId\":20444,\"journal\":{\"name\":\"Proceedings 2019 Network and Distributed System Security Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2019 Network and Distributed System Security Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14722/ndss.2019.23541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2019 Network and Distributed System Security Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14722/ndss.2019.23541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-after-free in Legacy C/C++
Pointer invalidation has been a popular approach adopted in many recent studies to mitigate use-after-free errors. The approach can be divided largely into two different schemes: explicit invalidation and implicit invalidation. The former aims to eradicate the root cause of use-after-free errors by explicitly invalidating every dangling pointer. In contrast, the latter aims to prevent dangling pointers by freeing an object only if there is no pointer referring to it. A downside of the explicit scheme is that it is expensive, as it demands high-cost algorithms or a large amount of space to maintain up-to-date lists of pointer locations linking to each object. Implicit invalidation is more efficient in that even without any explicit effort, it can eliminate dangling pointers by leaving objects undeleted until all the links between the objects and their referring pointers vanish by themselves during program execution. However, such an argument only holds if the scheme knows exactly when each link is created and deleted. Reference counting is a traditional method to determine the existence of reference links between objects and pointers. Unfortunately, impeccable reference counting for legacy C/C++ code is very difficult and expensive to achieve in practice, mainly because of the type unsafe operations in the code. In this paper, we present a solution, called CRCount, to the use-after-free problem in legacy C/C++. For effective and efficient problem solving, CRCount is armed with the pointer footprinting technique that enables us to compute, with high accuracy, the reference count of every object referred to by the pointers in the legacy code. Our experiments demonstrate that CRCount mitigates the useafter-free errors with a lower performance-wise and space-wise overhead than the existing pointer invalidation solutions.