从社交媒体推断旅行

Alessio Signorini, P. Polgreen, Alberto Maria Segre
{"title":"从社交媒体推断旅行","authors":"Alessio Signorini, P. Polgreen, Alberto Maria Segre","doi":"10.3402/EHTJ.V4I0.11126","DOIUrl":null,"url":null,"abstract":"Introduction The spread of infectious diseases is facilitated by human travel. Disease is often introduced by travelers and then spread among susceptible individuals. Likewise, uninfected susceptible travelers can move into populations sustaining the spread of an infectious disease. Several disease-modeling efforts have incorporated travel and census data in an effort to better understand the spread of disease. Unfortunately, most travel data are not fine grained enough to capture individual movements over long periods and large spaces. Alternative methods (e.g., tracking currency movements or cell phone signals) have been suggested to measure how people move with higher resolution but these are often sparse, expensive and not readily available to researchers. FourSquare is a social media application that permits users to ‘check-in’ (i.e., record their currentlocation at stores, restaurants, etc.) via their mobile telephones in exchange for incentives (e.g., location-specific coupons). FourSquare and similar applications (Gowalla, Yelp, etc.) generally broadcast each check-in via Twitter or Facebook; in addition, some GPS-enabled mobile Twitter clients add explicit geocodes to individual tweets. Here, we propose the use of geocoded social media data as a real-time fine-grained proxy for human travel.","PeriodicalId":72898,"journal":{"name":"Emerging health threats journal","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring travel from social media\",\"authors\":\"Alessio Signorini, P. Polgreen, Alberto Maria Segre\",\"doi\":\"10.3402/EHTJ.V4I0.11126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction The spread of infectious diseases is facilitated by human travel. Disease is often introduced by travelers and then spread among susceptible individuals. Likewise, uninfected susceptible travelers can move into populations sustaining the spread of an infectious disease. Several disease-modeling efforts have incorporated travel and census data in an effort to better understand the spread of disease. Unfortunately, most travel data are not fine grained enough to capture individual movements over long periods and large spaces. Alternative methods (e.g., tracking currency movements or cell phone signals) have been suggested to measure how people move with higher resolution but these are often sparse, expensive and not readily available to researchers. FourSquare is a social media application that permits users to ‘check-in’ (i.e., record their currentlocation at stores, restaurants, etc.) via their mobile telephones in exchange for incentives (e.g., location-specific coupons). FourSquare and similar applications (Gowalla, Yelp, etc.) generally broadcast each check-in via Twitter or Facebook; in addition, some GPS-enabled mobile Twitter clients add explicit geocodes to individual tweets. Here, we propose the use of geocoded social media data as a real-time fine-grained proxy for human travel.\",\"PeriodicalId\":72898,\"journal\":{\"name\":\"Emerging health threats journal\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging health threats journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3402/EHTJ.V4I0.11126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging health threats journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3402/EHTJ.V4I0.11126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类的旅行促进了传染病的传播。疾病通常由旅行者引入,然后在易感人群中传播。同样,未受感染的易感旅行者可以进入维持传染病传播的人群。为了更好地了解疾病的传播,一些疾病建模工作已经将旅行和人口普查数据纳入其中。不幸的是,大多数旅行数据的粒度不够细,无法捕捉长时间和大空间内的个人移动。替代方法(例如,跟踪货币运动或手机信号)已被建议以更高的分辨率测量人们如何运动,但这些方法通常是稀疏的,昂贵的,并且不易为研究人员所用。FourSquare是一个社交媒体应用程序,允许用户通过手机“签到”(例如,记录他们在商店、餐馆等的当前位置),以换取奖励(例如,特定位置的优惠券)。FourSquare和类似的应用程序(Gowalla、Yelp等)通常会通过Twitter或Facebook广播每次签到;此外,一些支持gps的移动Twitter客户端向单个tweet添加了显式的地理编码。在这里,我们建议使用地理编码的社交媒体数据作为人类旅行的实时细粒度代理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inferring travel from social media
Introduction The spread of infectious diseases is facilitated by human travel. Disease is often introduced by travelers and then spread among susceptible individuals. Likewise, uninfected susceptible travelers can move into populations sustaining the spread of an infectious disease. Several disease-modeling efforts have incorporated travel and census data in an effort to better understand the spread of disease. Unfortunately, most travel data are not fine grained enough to capture individual movements over long periods and large spaces. Alternative methods (e.g., tracking currency movements or cell phone signals) have been suggested to measure how people move with higher resolution but these are often sparse, expensive and not readily available to researchers. FourSquare is a social media application that permits users to ‘check-in’ (i.e., record their currentlocation at stores, restaurants, etc.) via their mobile telephones in exchange for incentives (e.g., location-specific coupons). FourSquare and similar applications (Gowalla, Yelp, etc.) generally broadcast each check-in via Twitter or Facebook; in addition, some GPS-enabled mobile Twitter clients add explicit geocodes to individual tweets. Here, we propose the use of geocoded social media data as a real-time fine-grained proxy for human travel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Natural World Individuals and Society Hospital preparedness in community measles outbreaks-challenges and recommendations for low-resource settings. Detection of blaIMP4 and blaNDM1 harboring Klebsiella pneumoniae isolates in a university hospital in Malaysia. Two vicious circles contributing to a diagnostic delay for tuberculosis patients in Arkhangelsk.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1