通过机器学习预测产品类型变化对整体设备效率的影响

IF 1.3 Q3 ENGINEERING, MECHANICAL PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING Pub Date : 2022-12-19 DOI:10.3311/ppme.21320
Péter Dobra, J. Jósvai
{"title":"通过机器学习预测产品类型变化对整体设备效率的影响","authors":"Péter Dobra, J. Jósvai","doi":"10.3311/ppme.21320","DOIUrl":null,"url":null,"abstract":"Nowadays, Industry 4.0 and the Smart Manufacturing environment are increasingly taking advantage of Artificial Intelligence. There are more and more sensors, cameras, vision systems and barcodes in the production area, as a result of which the volume of data recorded during manufacturing and assembly operations is growing extremely fast. The interpretation and processing of such production-type data by humans is no longer possible effectively. In the Big Data domain, machine learning is playing an increasingly important role within data mining. This paper focuses on the product change processes of semi-automatic assembly line batch production and examines the impact of product type changes on the Overall Equipment Effectiveness (OEE) and attempts to determine future values through supervised machine learning. Using decision tree technology, the effect on the OEE value can be predicted with an accuracy of up to 1%. The presented data and conclusions come from a real industrial environment, so the obtained results are proven in practice.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Impact of Product Type Changes on Overall Equipment Effectiveness Through Machine Learning\",\"authors\":\"Péter Dobra, J. Jósvai\",\"doi\":\"10.3311/ppme.21320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, Industry 4.0 and the Smart Manufacturing environment are increasingly taking advantage of Artificial Intelligence. There are more and more sensors, cameras, vision systems and barcodes in the production area, as a result of which the volume of data recorded during manufacturing and assembly operations is growing extremely fast. The interpretation and processing of such production-type data by humans is no longer possible effectively. In the Big Data domain, machine learning is playing an increasingly important role within data mining. This paper focuses on the product change processes of semi-automatic assembly line batch production and examines the impact of product type changes on the Overall Equipment Effectiveness (OEE) and attempts to determine future values through supervised machine learning. Using decision tree technology, the effect on the OEE value can be predicted with an accuracy of up to 1%. The presented data and conclusions come from a real industrial environment, so the obtained results are proven in practice.\",\"PeriodicalId\":43630,\"journal\":{\"name\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppme.21320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppme.21320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

如今,工业4.0和智能制造环境越来越多地利用人工智能。在生产领域有越来越多的传感器、摄像头、视觉系统和条形码,因此在制造和组装过程中记录的数据量增长得非常快。人类不再可能有效地解释和处理这种生产类型的数据。在大数据领域,机器学习在数据挖掘中扮演着越来越重要的角色。本文关注半自动装配线批量生产的产品变更过程,考察产品类型变更对整体设备有效性(OEE)的影响,并试图通过监督机器学习确定未来值。使用决策树技术,可以预测对OEE值的影响,准确率高达1%。本文给出的数据和结论来自于一个真实的工业环境,因此所得结果在实践中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the Impact of Product Type Changes on Overall Equipment Effectiveness Through Machine Learning
Nowadays, Industry 4.0 and the Smart Manufacturing environment are increasingly taking advantage of Artificial Intelligence. There are more and more sensors, cameras, vision systems and barcodes in the production area, as a result of which the volume of data recorded during manufacturing and assembly operations is growing extremely fast. The interpretation and processing of such production-type data by humans is no longer possible effectively. In the Big Data domain, machine learning is playing an increasingly important role within data mining. This paper focuses on the product change processes of semi-automatic assembly line batch production and examines the impact of product type changes on the Overall Equipment Effectiveness (OEE) and attempts to determine future values through supervised machine learning. Using decision tree technology, the effect on the OEE value can be predicted with an accuracy of up to 1%. The presented data and conclusions come from a real industrial environment, so the obtained results are proven in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
20 weeks
期刊介绍: Periodica Polytechnica is a publisher of the Budapest University of Technology and Economics. It publishes seven international journals (Architecture, Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Social and Management Sciences, Transportation Engineering). The journals have free electronic versions.
期刊最新文献
Investigating Particle Paths in Intracranial Aneurysms: A Parametric Study The Critical Length is a Good Measure to Distinguish between Stick Balancing in the ML and AP Directions Global Approach on the Shear and Cross Tension Strength of Resistance Spot Welded Thin Steel Sheets Photovoltaic Energy Generation in Hungary: Potentials of Green Hydrogen Production by PEM Technology Numerical Analysis to Investigate the Impact of Skirt Geometric Parameters on Secondary Piston Movement in a Single-cylinder Diesel Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1