热加热调整氧化铜纳米材料的结构和光学性质及其对刚果红染料光催化降解的影响

IF 1 4区 工程技术 Q4 CHEMISTRY, MULTIDISCIPLINARY Iranian Journal of Chemistry & Chemical Engineering-international English Edition Pub Date : 2021-09-01 DOI:10.30492/IJCCE.2021.127597.4127
Y. Javed, S. Rehman, N. A. Shad, M. M. Sajid, K. Ali, Y. Jamil, M. Sajjad, A. Nawaz, S. Sharma
{"title":"热加热调整氧化铜纳米材料的结构和光学性质及其对刚果红染料光催化降解的影响","authors":"Y. Javed, S. Rehman, N. A. Shad, M. M. Sajid, K. Ali, Y. Jamil, M. Sajjad, A. Nawaz, S. Sharma","doi":"10.30492/IJCCE.2021.127597.4127","DOIUrl":null,"url":null,"abstract":"In this study, Copper oxide (CuO) nanoparticles (NPs) were prepared using the chemical co-precipitation method and treated at different calcination temperatures. The synthesized CuO NPs have been calcinated at 300 °C, 500 °C, and 700 °C. The X-ray Diffraction (XRD) results exhibited a decrease in the width of the principle diffraction peak with the temperature rise. Crystallite size was determined by Scherrer’s formula, whereas, Williamson-Hall method presented drastic variation in size indicating the creation of lattice strain with the rise in calcination temperature. Scanning Electron Microscopy (SEM) images showed an increase in grain size and vary from 170 nm – 430 nm. X-ray Energy Dispersive Spectroscopy (EDS) results indicate the formation of CuO NPs and relative Cu contents increased (52.9 to 72.5 Atomic percentage) with temperature. Optical properties are also affected by the calcination temperature and a reduction in bandgap is observed with the increase in temperature. Fourier Transform Infra-red spectroscopy (FTIR) spectra of different samples showed identical bonding behavior and no apparent change in bonding was observed. Photo-degradation of Congo Red dye was performed with CuO NPs treated at different temperatures and NPs treated at 500 °C, have shown maximum degradation efficiency in 75 min under visible light.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"7 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tuning structural and optical properties of copper oxide nanomaterials by thermal heating and its effect on photocatalytic degradation of Congo Red dye\",\"authors\":\"Y. Javed, S. Rehman, N. A. Shad, M. M. Sajid, K. Ali, Y. Jamil, M. Sajjad, A. Nawaz, S. Sharma\",\"doi\":\"10.30492/IJCCE.2021.127597.4127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, Copper oxide (CuO) nanoparticles (NPs) were prepared using the chemical co-precipitation method and treated at different calcination temperatures. The synthesized CuO NPs have been calcinated at 300 °C, 500 °C, and 700 °C. The X-ray Diffraction (XRD) results exhibited a decrease in the width of the principle diffraction peak with the temperature rise. Crystallite size was determined by Scherrer’s formula, whereas, Williamson-Hall method presented drastic variation in size indicating the creation of lattice strain with the rise in calcination temperature. Scanning Electron Microscopy (SEM) images showed an increase in grain size and vary from 170 nm – 430 nm. X-ray Energy Dispersive Spectroscopy (EDS) results indicate the formation of CuO NPs and relative Cu contents increased (52.9 to 72.5 Atomic percentage) with temperature. Optical properties are also affected by the calcination temperature and a reduction in bandgap is observed with the increase in temperature. Fourier Transform Infra-red spectroscopy (FTIR) spectra of different samples showed identical bonding behavior and no apparent change in bonding was observed. Photo-degradation of Congo Red dye was performed with CuO NPs treated at different temperatures and NPs treated at 500 °C, have shown maximum degradation efficiency in 75 min under visible light.\",\"PeriodicalId\":14572,\"journal\":{\"name\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30492/IJCCE.2021.127597.4127\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.127597.4127","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本研究采用化学共沉淀法制备了氧化铜纳米颗粒(CuO),并在不同的煅烧温度下进行了处理。合成的CuO纳米粒子分别在300℃、500℃和700℃下煅烧。x射线衍射(XRD)结果表明,随着温度的升高,主衍射峰的宽度减小。晶体尺寸由Scherrer公式确定,而Williamson-Hall方法显示,随着煅烧温度的升高,晶体尺寸变化剧烈,表明晶格应变的产生。扫描电镜(SEM)图像显示晶粒尺寸在170 ~ 430 nm范围内增大。x射线能谱(EDS)结果表明,随着温度的升高,CuO NPs的形成和相对Cu含量(原子百分数52.9 ~ 72.5)增加。光学性质也受煅烧温度的影响,并观察到带隙随温度的升高而减小。不同样品的傅里叶变换红外光谱(FTIR)显示出相同的成键行为,没有观察到明显的成键变化。用不同温度和500℃处理的CuO NPs对刚果红染料进行光降解,在可见光下75 min的降解效率最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tuning structural and optical properties of copper oxide nanomaterials by thermal heating and its effect on photocatalytic degradation of Congo Red dye
In this study, Copper oxide (CuO) nanoparticles (NPs) were prepared using the chemical co-precipitation method and treated at different calcination temperatures. The synthesized CuO NPs have been calcinated at 300 °C, 500 °C, and 700 °C. The X-ray Diffraction (XRD) results exhibited a decrease in the width of the principle diffraction peak with the temperature rise. Crystallite size was determined by Scherrer’s formula, whereas, Williamson-Hall method presented drastic variation in size indicating the creation of lattice strain with the rise in calcination temperature. Scanning Electron Microscopy (SEM) images showed an increase in grain size and vary from 170 nm – 430 nm. X-ray Energy Dispersive Spectroscopy (EDS) results indicate the formation of CuO NPs and relative Cu contents increased (52.9 to 72.5 Atomic percentage) with temperature. Optical properties are also affected by the calcination temperature and a reduction in bandgap is observed with the increase in temperature. Fourier Transform Infra-red spectroscopy (FTIR) spectra of different samples showed identical bonding behavior and no apparent change in bonding was observed. Photo-degradation of Congo Red dye was performed with CuO NPs treated at different temperatures and NPs treated at 500 °C, have shown maximum degradation efficiency in 75 min under visible light.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
22.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.
期刊最新文献
Thermodynamic Modeling the Solubility of CO2 in the Binary and Three-Component Aqua System of Methyldiethanolamine (MDEA) Using the N-Wilson-NRF The high performance of diethylhydroxylamine in comparison with hydrazine for the removal of dissolved oxygen from boilers of power plant Acoustofluidic separation of microparticles: a numerical study Morpho-structural characterization and electrophoretic deposition of xonotlite obtained by a hydrothermal method A 2E Analysis and Optimization of a Hybrid Solar Humidification-Dehumidification Water Desalination System and Solar Water Heater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1