基于生物地理的多目标虚拟机布局优化

Q. Zheng, R. Li, Xiuqi Li, Jie Wu
{"title":"基于生物地理的多目标虚拟机布局优化","authors":"Q. Zheng, R. Li, Xiuqi Li, Jie Wu","doi":"10.1109/CCGrid.2015.25","DOIUrl":null,"url":null,"abstract":"In cloud computing, an important issue is virtual machine placement (VMP), selecting the most suitable set of physical hosts for a set of virtual machines. In this paper, we present a novel solution to the VMP problem called VMPMBBO. Our scheme treats the VMP problem as a complex system, and utilizes the biogeography-based optimization (BBO) technique to optimize the virtual machine placement that minimizes power consumption, resource waste, server unevenness, inter-VM traffic, storage traffic and migration time at the same time. Compared with three existing multi-objective VMP optimization algorithms, VMPMBBO has better convergence characteristics and is more computationally efficient. VMPMBBO is also robust. Extensive experiments are conducted using synthetic data from related literatures. The results confirm the effectiveness, efficiency, and robustness of the proposed approach. To the best of our knowledge, this work is the first approach that applies BBO and complex system optimization to virtual machine placement (VMP).","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"9 1","pages":"687-696"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"A Multi-objective Biogeography-Based Optimization for Virtual Machine Placement\",\"authors\":\"Q. Zheng, R. Li, Xiuqi Li, Jie Wu\",\"doi\":\"10.1109/CCGrid.2015.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In cloud computing, an important issue is virtual machine placement (VMP), selecting the most suitable set of physical hosts for a set of virtual machines. In this paper, we present a novel solution to the VMP problem called VMPMBBO. Our scheme treats the VMP problem as a complex system, and utilizes the biogeography-based optimization (BBO) technique to optimize the virtual machine placement that minimizes power consumption, resource waste, server unevenness, inter-VM traffic, storage traffic and migration time at the same time. Compared with three existing multi-objective VMP optimization algorithms, VMPMBBO has better convergence characteristics and is more computationally efficient. VMPMBBO is also robust. Extensive experiments are conducted using synthetic data from related literatures. The results confirm the effectiveness, efficiency, and robustness of the proposed approach. To the best of our knowledge, this work is the first approach that applies BBO and complex system optimization to virtual machine placement (VMP).\",\"PeriodicalId\":6664,\"journal\":{\"name\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"volume\":\"9 1\",\"pages\":\"687-696\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2015.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

在云计算中,一个重要的问题是虚拟机布局(VMP),即为一组虚拟机选择最合适的一组物理主机。在本文中,我们提出了一种新的VMP问题的解决方案,称为VMPMBBO。我们的方案将VMP问题视为一个复杂的系统,并利用基于生物地理的优化(BBO)技术对虚拟机布局进行优化,从而最大限度地减少功耗、资源浪费、服务器不均匀性、虚拟机间流量、存储流量和迁移时间。与现有的三种多目标VMP优化算法相比,VMPMBBO具有更好的收敛特性和更高的计算效率。VMPMBBO也很健壮。利用相关文献的综合数据进行了大量的实验。结果证实了该方法的有效性、高效性和鲁棒性。据我们所知,这项工作是第一个将BBO和复杂系统优化应用于虚拟机放置(VMP)的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-objective Biogeography-Based Optimization for Virtual Machine Placement
In cloud computing, an important issue is virtual machine placement (VMP), selecting the most suitable set of physical hosts for a set of virtual machines. In this paper, we present a novel solution to the VMP problem called VMPMBBO. Our scheme treats the VMP problem as a complex system, and utilizes the biogeography-based optimization (BBO) technique to optimize the virtual machine placement that minimizes power consumption, resource waste, server unevenness, inter-VM traffic, storage traffic and migration time at the same time. Compared with three existing multi-objective VMP optimization algorithms, VMPMBBO has better convergence characteristics and is more computationally efficient. VMPMBBO is also robust. Extensive experiments are conducted using synthetic data from related literatures. The results confirm the effectiveness, efficiency, and robustness of the proposed approach. To the best of our knowledge, this work is the first approach that applies BBO and complex system optimization to virtual machine placement (VMP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self Protecting Data Sharing Using Generic Policies Partition-Aware Routing to Improve Network Isolation in Infiniband Based Multi-tenant Clusters MIC-Tandem: Parallel X!Tandem Using MIC on Tandem Mass Spectrometry Based Proteomics Data Study of the KVM CPU Performance of Open-Source Cloud Management Platforms Visualizing City Events on Search Engine: Tword the Search Infrustration for Smart City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1