结合人工智能建模进行油田产量预测

M. Serna, G. A. Espinosa, A. Montoya, Hernán Darío Álvarez Zapata
{"title":"结合人工智能建模进行油田产量预测","authors":"M. Serna, G. A. Espinosa, A. Montoya, Hernán Darío Álvarez Zapata","doi":"10.29047/01225383.149","DOIUrl":null,"url":null,"abstract":"This paper presents the results about using a methodology that combines two artificial intelligence (AI) models to predict the oil, water and gas production in a Colombian petroleum field. By combining fuzzy logic (FL) and artificial neural networks (ANN) a novelty data mining procedure is implemented, including a data imputation strategy. The FL tool determines the most useful variables or parameters to include into each well production model. ANN and FIS (fuzzy inference systems) predictive models identification is developed after the data mining process. The FIS models are capable to predict specific behaviors, while ANN models are able to forecast an average behavior. The combined use of both tools under few iterative steps, allows to improve forecasting of well behavior until reach a specified accuracy level. The proposed data imputation procedure is the key element to correct false or to complete void positions into operation data used to identify models for a typical oil production field. At the end, two models are obtained for each well product, conforming an interesting tool given the best accurate prediction of fluid phase production.","PeriodicalId":10745,"journal":{"name":"CT&F - Ciencia, Tecnología y Futuro","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Combined artificial intelligence modeling for production forecast in a petroleum production field\",\"authors\":\"M. Serna, G. A. Espinosa, A. Montoya, Hernán Darío Álvarez Zapata\",\"doi\":\"10.29047/01225383.149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results about using a methodology that combines two artificial intelligence (AI) models to predict the oil, water and gas production in a Colombian petroleum field. By combining fuzzy logic (FL) and artificial neural networks (ANN) a novelty data mining procedure is implemented, including a data imputation strategy. The FL tool determines the most useful variables or parameters to include into each well production model. ANN and FIS (fuzzy inference systems) predictive models identification is developed after the data mining process. The FIS models are capable to predict specific behaviors, while ANN models are able to forecast an average behavior. The combined use of both tools under few iterative steps, allows to improve forecasting of well behavior until reach a specified accuracy level. The proposed data imputation procedure is the key element to correct false or to complete void positions into operation data used to identify models for a typical oil production field. At the end, two models are obtained for each well product, conforming an interesting tool given the best accurate prediction of fluid phase production.\",\"PeriodicalId\":10745,\"journal\":{\"name\":\"CT&F - Ciencia, Tecnología y Futuro\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CT&F - Ciencia, Tecnología y Futuro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29047/01225383.149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CT&F - Ciencia, Tecnología y Futuro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29047/01225383.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一种结合了两种人工智能(AI)模型的方法来预测哥伦比亚某油田的油、水和天然气产量的结果。将模糊逻辑(FL)与人工神经网络(ANN)相结合,实现了一种新颖的数据挖掘过程,包括数据输入策略。FL工具确定最有用的变量或参数,以包含在每口井的生产模型中。人工神经网络和模糊推理系统(FIS)预测模型识别是在数据挖掘过程之后发展起来的。FIS模型能够预测特定行为,而ANN模型能够预测平均行为。结合使用这两种工具,只需几个迭代步骤,就可以提高对井动态的预测,直到达到指定的精度水平。所提出的数据输入程序是将错误或完整的空洞位置输入到用于典型油田模型识别的操作数据中的关键因素。最后,为每口井产品建立了两个模型,这是最准确预测流体产量的一种有趣的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combined artificial intelligence modeling for production forecast in a petroleum production field
This paper presents the results about using a methodology that combines two artificial intelligence (AI) models to predict the oil, water and gas production in a Colombian petroleum field. By combining fuzzy logic (FL) and artificial neural networks (ANN) a novelty data mining procedure is implemented, including a data imputation strategy. The FL tool determines the most useful variables or parameters to include into each well production model. ANN and FIS (fuzzy inference systems) predictive models identification is developed after the data mining process. The FIS models are capable to predict specific behaviors, while ANN models are able to forecast an average behavior. The combined use of both tools under few iterative steps, allows to improve forecasting of well behavior until reach a specified accuracy level. The proposed data imputation procedure is the key element to correct false or to complete void positions into operation data used to identify models for a typical oil production field. At the end, two models are obtained for each well product, conforming an interesting tool given the best accurate prediction of fluid phase production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Critical factors for unconventional hydrocarbon resources development Mass balance of Neogene sediments in the Colombia basin relationship with the evolution of the Magdalena and Cauca River basins Suitability assessment for electricity generation through renewable sources: towards sustainable energy production Bulk rheology characterization of biopolymer solutions and discussions of their potential for enhanced oil recovery applications Comparative analysis of matching pursuit algorithms for Kirchhoff migration on compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1