{"title":"煤油污染土壤中基本元素和有毒元素的来源解析、健康和生态风险评估","authors":"F. Adebiyi, O. Ore, A. Adegunwa, G. Akhigbe","doi":"10.1080/15275922.2021.1940384","DOIUrl":null,"url":null,"abstract":"Abstract The levels of essential and toxic elements (Mn, Fe, Cu, Zn, Co, Cr, and Ni) were determined in kerosene-contaminated soils with the aim of identifying their possible sources and associated health and ecological risks. Ni was undetected in the studied soils. Fe had the highest mean concentration (14,172 ± 6110.13 mg/kg) while Co had the least mean concentration (1.42 ± 3.17 mg/kg) in the studied soils. The studied soils showed varying degrees of contamination/pollution based on the results of contamination factor, geoaccumulation index, enrichment factor, modified degree of contamination, and pollution load index. Source apportionment using cluster analysis, principal component analysis, and positive matrix factorization identified vehicular emissions, industrial emissions, biomass/waste incineration, and natural sources as the major contributors to pollution of the soils. Health risk assessment showed that there were no noncarcinogenic risks associated with ingestion, inhalation, and dermal exposure to the studied soils (HI < 1). Ingestion and dermal exposure were identified as the principal exposure pathways to non-carcinogenic health risks. Fe had the highest individual contribution to potential health risks (RR = 57.63%). Ecological risk assessment indicated low ecological risks by the metals in the studied soils (RI < 150).","PeriodicalId":11895,"journal":{"name":"Environmental Forensics","volume":"441 1","pages":"44 - 54"},"PeriodicalIF":1.5000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Source apportionment, health and ecological risk assessments of essential and toxic elements in kerosene-contaminated soils\",\"authors\":\"F. Adebiyi, O. Ore, A. Adegunwa, G. Akhigbe\",\"doi\":\"10.1080/15275922.2021.1940384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The levels of essential and toxic elements (Mn, Fe, Cu, Zn, Co, Cr, and Ni) were determined in kerosene-contaminated soils with the aim of identifying their possible sources and associated health and ecological risks. Ni was undetected in the studied soils. Fe had the highest mean concentration (14,172 ± 6110.13 mg/kg) while Co had the least mean concentration (1.42 ± 3.17 mg/kg) in the studied soils. The studied soils showed varying degrees of contamination/pollution based on the results of contamination factor, geoaccumulation index, enrichment factor, modified degree of contamination, and pollution load index. Source apportionment using cluster analysis, principal component analysis, and positive matrix factorization identified vehicular emissions, industrial emissions, biomass/waste incineration, and natural sources as the major contributors to pollution of the soils. Health risk assessment showed that there were no noncarcinogenic risks associated with ingestion, inhalation, and dermal exposure to the studied soils (HI < 1). Ingestion and dermal exposure were identified as the principal exposure pathways to non-carcinogenic health risks. Fe had the highest individual contribution to potential health risks (RR = 57.63%). Ecological risk assessment indicated low ecological risks by the metals in the studied soils (RI < 150).\",\"PeriodicalId\":11895,\"journal\":{\"name\":\"Environmental Forensics\",\"volume\":\"441 1\",\"pages\":\"44 - 54\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Forensics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15275922.2021.1940384\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Forensics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15275922.2021.1940384","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Source apportionment, health and ecological risk assessments of essential and toxic elements in kerosene-contaminated soils
Abstract The levels of essential and toxic elements (Mn, Fe, Cu, Zn, Co, Cr, and Ni) were determined in kerosene-contaminated soils with the aim of identifying their possible sources and associated health and ecological risks. Ni was undetected in the studied soils. Fe had the highest mean concentration (14,172 ± 6110.13 mg/kg) while Co had the least mean concentration (1.42 ± 3.17 mg/kg) in the studied soils. The studied soils showed varying degrees of contamination/pollution based on the results of contamination factor, geoaccumulation index, enrichment factor, modified degree of contamination, and pollution load index. Source apportionment using cluster analysis, principal component analysis, and positive matrix factorization identified vehicular emissions, industrial emissions, biomass/waste incineration, and natural sources as the major contributors to pollution of the soils. Health risk assessment showed that there were no noncarcinogenic risks associated with ingestion, inhalation, and dermal exposure to the studied soils (HI < 1). Ingestion and dermal exposure were identified as the principal exposure pathways to non-carcinogenic health risks. Fe had the highest individual contribution to potential health risks (RR = 57.63%). Ecological risk assessment indicated low ecological risks by the metals in the studied soils (RI < 150).
期刊介绍:
Environmental Forensics provides a forum for scientific investigations that address environment contamination, its sources, and the historical reconstruction of its release into the environment. The context for investigations that form the published papers in the journal are often subjects to regulatory or legal proceedings, public scrutiny, and debate. In all contexts, rigorous scientific underpinnings guide the subject investigations.
Specifically, the journal is an international, quarterly, peer-reviewed publication offering scientific studies that explore or are relevant to the source, age, fate, transport, as well as human health and ecological effects of environmental contamination. Journal subject matter encompasses all aspects of contamination mentioned above within the environmental media of air, water, soil, sediments and biota. Data evaluation and analysis approaches are highlighted as well including multivariate statistical methods. Journal focus is on scientific and technical information, data, and critical analysis in the following areas:
-Contaminant Fingerprinting for source identification and/or age-dating, including (but not limited to) chemical, isotopic, chiral, mineralogical/microscopy techniques, DNA and tree-ring fingerprinting
-Specific Evaluative Techniques for source identification and/or age-dating including (but not limited to) historical document and aerial photography review, signature chemicals, atmospheric tracers and markets forensics, background concentration evaluations.
-Statistical Evaluation, Contaminant Modeling and Data Visualization
-Vapor Intrusion including delineating the source and background values of indoor air contamination
-Integrated Case Studies, employing environmental fate techniques
-Legal Considerations, including strategic considerations for environmental fate in litigation and arbitration, and regulatory statutes and actions