S. Wald, A. Pokryvailo, G. Appelboim, M. Katz, E. Weiss
{"title":"用热脉冲等离子体技术处理危险废物和回收有价值的产品","authors":"S. Wald, A. Pokryvailo, G. Appelboim, M. Katz, E. Weiss","doi":"10.1109/PPC.1999.825510","DOIUrl":null,"url":null,"abstract":"Material cracking, or decomposition, is a basic and essential process in chemical industries. This process is a major energy consumer and a cause of environmental pollution. A new, efficient and environmentally friendly technique and equipment that can be used in a closed-loop process for the treatment and recovery of materials is proposed. The idea is to decompose a material using a high-energy pulsed-plasma jet. The plasma specific features enable a most efficient radiative heat transfer to the treated material bed. Therefore, enhanced energy transfer to selected chemical bonds is achieved. The process can be defined as a highly efficient photolysis. Proof-of-concept tests were carried out on 1,2-Dichloroethane (DCE). The material was fed in batches of a few grams each. A total decomposition of the DCE was achieved with less than 60% of the energy consumption required in a conventional treatment. A modular transportable laboratory has been constructed in the framework of 4 European Brite Euram R and D program. It comprises a 30 kW pulsed power supply featuring an all-solid state switching system, confined plasma discharge injector, reactor and gas handling and monitoring systems. The expected treatment capacity is 5-10 kg/hour of fluid waste. The plasma injector is designed to operate in repetitive mode with expected lifetime of 10/sup 5/ pulses. Simulations and experimental characterization of major components are presented. It is expected that the proposed method will be the best available technology for many fluid wastes.","PeriodicalId":11209,"journal":{"name":"Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358)","volume":"26 1","pages":"460-463 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hazardous waste treatment and valuable products recovery with a thermal pulsed-plasma technology\",\"authors\":\"S. Wald, A. Pokryvailo, G. Appelboim, M. Katz, E. Weiss\",\"doi\":\"10.1109/PPC.1999.825510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Material cracking, or decomposition, is a basic and essential process in chemical industries. This process is a major energy consumer and a cause of environmental pollution. A new, efficient and environmentally friendly technique and equipment that can be used in a closed-loop process for the treatment and recovery of materials is proposed. The idea is to decompose a material using a high-energy pulsed-plasma jet. The plasma specific features enable a most efficient radiative heat transfer to the treated material bed. Therefore, enhanced energy transfer to selected chemical bonds is achieved. The process can be defined as a highly efficient photolysis. Proof-of-concept tests were carried out on 1,2-Dichloroethane (DCE). The material was fed in batches of a few grams each. A total decomposition of the DCE was achieved with less than 60% of the energy consumption required in a conventional treatment. A modular transportable laboratory has been constructed in the framework of 4 European Brite Euram R and D program. It comprises a 30 kW pulsed power supply featuring an all-solid state switching system, confined plasma discharge injector, reactor and gas handling and monitoring systems. The expected treatment capacity is 5-10 kg/hour of fluid waste. The plasma injector is designed to operate in repetitive mode with expected lifetime of 10/sup 5/ pulses. Simulations and experimental characterization of major components are presented. It is expected that the proposed method will be the best available technology for many fluid wastes.\",\"PeriodicalId\":11209,\"journal\":{\"name\":\"Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358)\",\"volume\":\"26 1\",\"pages\":\"460-463 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPC.1999.825510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.1999.825510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hazardous waste treatment and valuable products recovery with a thermal pulsed-plasma technology
Material cracking, or decomposition, is a basic and essential process in chemical industries. This process is a major energy consumer and a cause of environmental pollution. A new, efficient and environmentally friendly technique and equipment that can be used in a closed-loop process for the treatment and recovery of materials is proposed. The idea is to decompose a material using a high-energy pulsed-plasma jet. The plasma specific features enable a most efficient radiative heat transfer to the treated material bed. Therefore, enhanced energy transfer to selected chemical bonds is achieved. The process can be defined as a highly efficient photolysis. Proof-of-concept tests were carried out on 1,2-Dichloroethane (DCE). The material was fed in batches of a few grams each. A total decomposition of the DCE was achieved with less than 60% of the energy consumption required in a conventional treatment. A modular transportable laboratory has been constructed in the framework of 4 European Brite Euram R and D program. It comprises a 30 kW pulsed power supply featuring an all-solid state switching system, confined plasma discharge injector, reactor and gas handling and monitoring systems. The expected treatment capacity is 5-10 kg/hour of fluid waste. The plasma injector is designed to operate in repetitive mode with expected lifetime of 10/sup 5/ pulses. Simulations and experimental characterization of major components are presented. It is expected that the proposed method will be the best available technology for many fluid wastes.