{"title":"改造火星的技术要求","authors":"R. Zubrin, C. Mckay","doi":"10.2514/6.1993-2005","DOIUrl":null,"url":null,"abstract":"The planet Mars, while cold and arid today, once possessed a warm and wet climate, as evidenced by extensive fluvial features observable on its surface. It is believed that the warm climate of the primitive Mars was created by a strong greenhouse effect caused by a thick CO2 atmosphere. Mars lost its warm climate when most of the available volatile CO2 was fixed into the form of carbonate rock due to the action of cycling water. It is believed, however, that sufficient CO2 to form a 300 to 600 mb atmosphere may still exist in volatile form, either adsorbed into the regolith or frozen out at the south pole. This CO2 may be released by planetary warming, and as the CO2 atmosphere thickens, positive feedback is produced which can accelerate the warming trend. Thus it is conceivable, that by taking advantage of the positive feedback inherent in Mars' atmosphere/regolith CO2 system, that engineering efforts can produce drastic changes in climate and pressure on a planetary scale. In this paper we propose a mathematical model of the Martian CO2 system, and use it to produce analysis which clarifies the potential of positive feedback to accelerate planetary engineering efforts. It is shown that by taking advantage of the feedback, the requirements for planetary engineering can be reduced by about 2 orders of magnitude relative to previous estimates. We examine the potential of various schemes for producing the initial warming to drive the process, including the stationing of orbiting mirrors, the importation of natural volatiles with high greenhouse capacity from the outer solar system, and the production of artificial halocarbon greenhouse gases on the Martian surface through in-situ industry. If the orbital mirror scheme is adopted, mirrors with dimension on the order or 100 km radius are required to vaporize the CO2 in the south polar cap. If manufactured of solar sail like material, such mirrors would have a mass on the order of 200,000 tonnes. If manufactured in space out of asteroidal or Martian moon material, about 120 MWe-years of energy would be needed to produce the required aluminum. This amount of power can be provided by near-term multi","PeriodicalId":54906,"journal":{"name":"Jbis-Journal of the British Interplanetary Society","volume":"132 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1993-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Technological requirements for terraforming Mars\",\"authors\":\"R. Zubrin, C. Mckay\",\"doi\":\"10.2514/6.1993-2005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The planet Mars, while cold and arid today, once possessed a warm and wet climate, as evidenced by extensive fluvial features observable on its surface. It is believed that the warm climate of the primitive Mars was created by a strong greenhouse effect caused by a thick CO2 atmosphere. Mars lost its warm climate when most of the available volatile CO2 was fixed into the form of carbonate rock due to the action of cycling water. It is believed, however, that sufficient CO2 to form a 300 to 600 mb atmosphere may still exist in volatile form, either adsorbed into the regolith or frozen out at the south pole. This CO2 may be released by planetary warming, and as the CO2 atmosphere thickens, positive feedback is produced which can accelerate the warming trend. Thus it is conceivable, that by taking advantage of the positive feedback inherent in Mars' atmosphere/regolith CO2 system, that engineering efforts can produce drastic changes in climate and pressure on a planetary scale. In this paper we propose a mathematical model of the Martian CO2 system, and use it to produce analysis which clarifies the potential of positive feedback to accelerate planetary engineering efforts. It is shown that by taking advantage of the feedback, the requirements for planetary engineering can be reduced by about 2 orders of magnitude relative to previous estimates. We examine the potential of various schemes for producing the initial warming to drive the process, including the stationing of orbiting mirrors, the importation of natural volatiles with high greenhouse capacity from the outer solar system, and the production of artificial halocarbon greenhouse gases on the Martian surface through in-situ industry. If the orbital mirror scheme is adopted, mirrors with dimension on the order or 100 km radius are required to vaporize the CO2 in the south polar cap. If manufactured of solar sail like material, such mirrors would have a mass on the order of 200,000 tonnes. If manufactured in space out of asteroidal or Martian moon material, about 120 MWe-years of energy would be needed to produce the required aluminum. This amount of power can be provided by near-term multi\",\"PeriodicalId\":54906,\"journal\":{\"name\":\"Jbis-Journal of the British Interplanetary Society\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jbis-Journal of the British Interplanetary Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/6.1993-2005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jbis-Journal of the British Interplanetary Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.1993-2005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
The planet Mars, while cold and arid today, once possessed a warm and wet climate, as evidenced by extensive fluvial features observable on its surface. It is believed that the warm climate of the primitive Mars was created by a strong greenhouse effect caused by a thick CO2 atmosphere. Mars lost its warm climate when most of the available volatile CO2 was fixed into the form of carbonate rock due to the action of cycling water. It is believed, however, that sufficient CO2 to form a 300 to 600 mb atmosphere may still exist in volatile form, either adsorbed into the regolith or frozen out at the south pole. This CO2 may be released by planetary warming, and as the CO2 atmosphere thickens, positive feedback is produced which can accelerate the warming trend. Thus it is conceivable, that by taking advantage of the positive feedback inherent in Mars' atmosphere/regolith CO2 system, that engineering efforts can produce drastic changes in climate and pressure on a planetary scale. In this paper we propose a mathematical model of the Martian CO2 system, and use it to produce analysis which clarifies the potential of positive feedback to accelerate planetary engineering efforts. It is shown that by taking advantage of the feedback, the requirements for planetary engineering can be reduced by about 2 orders of magnitude relative to previous estimates. We examine the potential of various schemes for producing the initial warming to drive the process, including the stationing of orbiting mirrors, the importation of natural volatiles with high greenhouse capacity from the outer solar system, and the production of artificial halocarbon greenhouse gases on the Martian surface through in-situ industry. If the orbital mirror scheme is adopted, mirrors with dimension on the order or 100 km radius are required to vaporize the CO2 in the south polar cap. If manufactured of solar sail like material, such mirrors would have a mass on the order of 200,000 tonnes. If manufactured in space out of asteroidal or Martian moon material, about 120 MWe-years of energy would be needed to produce the required aluminum. This amount of power can be provided by near-term multi
期刊介绍:
The Journal of the British Interplanetary Society (JBIS) is a technical scientific journal, first published in 1934. JBIS is concerned with space science and space technology. The journal is edited and published monthly in the United Kingdom by the British Interplanetary Society.
Although the journal maintains high standards of rigorous peer review, the same with other journals in astronautics, it stands out as a journal willing to allow measured speculation on topics deemed to be at the frontiers of our knowledge in science. The boldness of journal in this respect, marks it out as containing often speculative but visionary papers on the subject of astronautics.