{"title":"基于顺序蒙特卡罗的均匀空间采样道路区域分割算法","authors":"Z. Procházka","doi":"10.2197/ipsjtcva.8.1","DOIUrl":null,"url":null,"abstract":"Vision based road recognition and tracking are crucial tasks in a field of autonomous driving. Road recognition methods based on shape analysis of road region have the potential to overcome the limitations of traditional boundary based approaches, but a robust method for road region segmentation is the challenging issue. In our work, we treat the problem of road region segmentation as a classification task, where road pixels are classified by statistical decision rule based on the probability density function (pdf) of road features. This paper presents a new algorithm for the estimation of the pdf, based on sequential Monte-Carlo (SMC) method. The proposed algorithm is evaluated on data sets of three different types of images, and the results of evaluation show the effectiveness of the proposed method.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"116 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential Monte-Carlo Based Road Region Segmentation Algorithm with Uniform Spatial Sampling\",\"authors\":\"Z. Procházka\",\"doi\":\"10.2197/ipsjtcva.8.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vision based road recognition and tracking are crucial tasks in a field of autonomous driving. Road recognition methods based on shape analysis of road region have the potential to overcome the limitations of traditional boundary based approaches, but a robust method for road region segmentation is the challenging issue. In our work, we treat the problem of road region segmentation as a classification task, where road pixels are classified by statistical decision rule based on the probability density function (pdf) of road features. This paper presents a new algorithm for the estimation of the pdf, based on sequential Monte-Carlo (SMC) method. The proposed algorithm is evaluated on data sets of three different types of images, and the results of evaluation show the effectiveness of the proposed method.\",\"PeriodicalId\":38957,\"journal\":{\"name\":\"IPSJ Transactions on Computer Vision and Applications\",\"volume\":\"116 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Computer Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtcva.8.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.8.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Sequential Monte-Carlo Based Road Region Segmentation Algorithm with Uniform Spatial Sampling
Vision based road recognition and tracking are crucial tasks in a field of autonomous driving. Road recognition methods based on shape analysis of road region have the potential to overcome the limitations of traditional boundary based approaches, but a robust method for road region segmentation is the challenging issue. In our work, we treat the problem of road region segmentation as a classification task, where road pixels are classified by statistical decision rule based on the probability density function (pdf) of road features. This paper presents a new algorithm for the estimation of the pdf, based on sequential Monte-Carlo (SMC) method. The proposed algorithm is evaluated on data sets of three different types of images, and the results of evaluation show the effectiveness of the proposed method.