基于顺序蒙特卡罗的均匀空间采样道路区域分割算法

Z. Procházka
{"title":"基于顺序蒙特卡罗的均匀空间采样道路区域分割算法","authors":"Z. Procházka","doi":"10.2197/ipsjtcva.8.1","DOIUrl":null,"url":null,"abstract":"Vision based road recognition and tracking are crucial tasks in a field of autonomous driving. Road recognition methods based on shape analysis of road region have the potential to overcome the limitations of traditional boundary based approaches, but a robust method for road region segmentation is the challenging issue. In our work, we treat the problem of road region segmentation as a classification task, where road pixels are classified by statistical decision rule based on the probability density function (pdf) of road features. This paper presents a new algorithm for the estimation of the pdf, based on sequential Monte-Carlo (SMC) method. The proposed algorithm is evaluated on data sets of three different types of images, and the results of evaluation show the effectiveness of the proposed method.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"116 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential Monte-Carlo Based Road Region Segmentation Algorithm with Uniform Spatial Sampling\",\"authors\":\"Z. Procházka\",\"doi\":\"10.2197/ipsjtcva.8.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vision based road recognition and tracking are crucial tasks in a field of autonomous driving. Road recognition methods based on shape analysis of road region have the potential to overcome the limitations of traditional boundary based approaches, but a robust method for road region segmentation is the challenging issue. In our work, we treat the problem of road region segmentation as a classification task, where road pixels are classified by statistical decision rule based on the probability density function (pdf) of road features. This paper presents a new algorithm for the estimation of the pdf, based on sequential Monte-Carlo (SMC) method. The proposed algorithm is evaluated on data sets of three different types of images, and the results of evaluation show the effectiveness of the proposed method.\",\"PeriodicalId\":38957,\"journal\":{\"name\":\"IPSJ Transactions on Computer Vision and Applications\",\"volume\":\"116 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Computer Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtcva.8.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.8.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

基于视觉的道路识别和跟踪是自动驾驶领域的关键任务。基于道路区域形状分析的道路识别方法有可能克服传统基于边界的道路识别方法的局限性,但如何实现道路区域的鲁棒分割是一个具有挑战性的问题。在我们的工作中,我们将道路区域分割问题视为一个分类任务,其中道路像素通过基于道路特征的概率密度函数(pdf)的统计决策规则进行分类。本文提出了一种基于序贯蒙特卡罗(SMC)方法的pdf估计新算法。在三种不同类型图像的数据集上对该算法进行了评价,评价结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sequential Monte-Carlo Based Road Region Segmentation Algorithm with Uniform Spatial Sampling
Vision based road recognition and tracking are crucial tasks in a field of autonomous driving. Road recognition methods based on shape analysis of road region have the potential to overcome the limitations of traditional boundary based approaches, but a robust method for road region segmentation is the challenging issue. In our work, we treat the problem of road region segmentation as a classification task, where road pixels are classified by statistical decision rule based on the probability density function (pdf) of road features. This paper presents a new algorithm for the estimation of the pdf, based on sequential Monte-Carlo (SMC) method. The proposed algorithm is evaluated on data sets of three different types of images, and the results of evaluation show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IPSJ Transactions on Computer Vision and Applications
IPSJ Transactions on Computer Vision and Applications Computer Science-Computer Vision and Pattern Recognition
自引率
0.00%
发文量
0
期刊最新文献
3D human pose estimation model using location-maps for distorted and disconnected images by a wearable omnidirectional camera Application of evolutionary and swarm optimization in computer vision: a literature survey Pseudo-labelling-aided semantic segmentation on sparsely annotated 3D point clouds Phase disambiguation using spatio-temporally modulated illumination in depth sensing Deep learning-based strategies for the detection and tracking of drones using several cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1