{"title":"基于块的图像检索伪相关反馈","authors":"Wei-Chao Lin","doi":"10.1080/0952813X.2021.1938695","DOIUrl":null,"url":null,"abstract":"ABSTRACT Pseudo-relevance feedback (PRF) is a relevance feedback (RF) technique for information retrieval that treats the top k retrieved images as relevance feedback. PRF is used to avoid the limitations of the traditional RF approach, which is a human-in-the-loop process. Although the pseudo-relevance feedback set contains noise, PRF can perform retrieval reasonably effectively. For implementing PRF, the Rocchio algorithm has been considered reasonably effective and is a well-established baseline method. However, it simply treats all of the top k feedback images as being equally similar to the query. Therefore, we present a block-based PRF approach for improving image retrieval performance. In this approach, images in the positive and negative feedback sets are further divided into predefined blocks, each of which contains one to several images, and blocks containing higher- or lower-ranked images will be assigned higher or lower weights, respectively. Experiments using the NUS-WIDE-LITE and Caltech 256 datasets and two different feature representations consistently show that the proposed approach using 30 blocks outperforms the baseline PRF in terms of P@10, P@20, and P@50. Furthermore, we show that a system that incorporates the user’s feedback allows the 30-block-based PRF approach to perform even better.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"10 1","pages":"891 - 903"},"PeriodicalIF":1.7000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Block-based pseudo-relevance feedback for image retrieval\",\"authors\":\"Wei-Chao Lin\",\"doi\":\"10.1080/0952813X.2021.1938695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Pseudo-relevance feedback (PRF) is a relevance feedback (RF) technique for information retrieval that treats the top k retrieved images as relevance feedback. PRF is used to avoid the limitations of the traditional RF approach, which is a human-in-the-loop process. Although the pseudo-relevance feedback set contains noise, PRF can perform retrieval reasonably effectively. For implementing PRF, the Rocchio algorithm has been considered reasonably effective and is a well-established baseline method. However, it simply treats all of the top k feedback images as being equally similar to the query. Therefore, we present a block-based PRF approach for improving image retrieval performance. In this approach, images in the positive and negative feedback sets are further divided into predefined blocks, each of which contains one to several images, and blocks containing higher- or lower-ranked images will be assigned higher or lower weights, respectively. Experiments using the NUS-WIDE-LITE and Caltech 256 datasets and two different feature representations consistently show that the proposed approach using 30 blocks outperforms the baseline PRF in terms of P@10, P@20, and P@50. Furthermore, we show that a system that incorporates the user’s feedback allows the 30-block-based PRF approach to perform even better.\",\"PeriodicalId\":15677,\"journal\":{\"name\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"volume\":\"10 1\",\"pages\":\"891 - 903\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0952813X.2021.1938695\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2021.1938695","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Block-based pseudo-relevance feedback for image retrieval
ABSTRACT Pseudo-relevance feedback (PRF) is a relevance feedback (RF) technique for information retrieval that treats the top k retrieved images as relevance feedback. PRF is used to avoid the limitations of the traditional RF approach, which is a human-in-the-loop process. Although the pseudo-relevance feedback set contains noise, PRF can perform retrieval reasonably effectively. For implementing PRF, the Rocchio algorithm has been considered reasonably effective and is a well-established baseline method. However, it simply treats all of the top k feedback images as being equally similar to the query. Therefore, we present a block-based PRF approach for improving image retrieval performance. In this approach, images in the positive and negative feedback sets are further divided into predefined blocks, each of which contains one to several images, and blocks containing higher- or lower-ranked images will be assigned higher or lower weights, respectively. Experiments using the NUS-WIDE-LITE and Caltech 256 datasets and two different feature representations consistently show that the proposed approach using 30 blocks outperforms the baseline PRF in terms of P@10, P@20, and P@50. Furthermore, we show that a system that incorporates the user’s feedback allows the 30-block-based PRF approach to perform even better.
期刊介绍:
Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research.
The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following:
• cognitive science
• games
• learning
• knowledge representation
• memory and neural system modelling
• perception
• problem-solving