K. Arakawa, T. Yanagitani, K. Kano, Akihiko Teshigahara, M. Akiyama
{"title":"常规射频磁控溅射沉积c轴倾斜ScAlN薄膜技术","authors":"K. Arakawa, T. Yanagitani, K. Kano, Akihiko Teshigahara, M. Akiyama","doi":"10.1109/ULTSYM.2010.5935747","DOIUrl":null,"url":null,"abstract":"It is difficult to synthesize c-axis tilted ScAlN films by using co-sputtering because unidirectional oblique incident of sputtered particles is needed to obtain c-axis tilted structure. To realize the oblique incident single source sputtering technique was proposed for c-axis tilted film deposition. ScAl alloy target was used to achieve ScAlN film synthesis instead of co-sputtering. As a result c-axis highly tilted ScAlN film (tilt angle =33 °) was obtained by using this deposition technique. From the result of film transducer loss measurement we found that longitudinal and shear elasticity of AlN decreases by adding Sc. c-axis highly tilted ScAlN film showed giant k15' values of 0.32 in spite of its low degree of orientation.","PeriodicalId":6437,"journal":{"name":"2010 IEEE International Ultrasonics Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Deposition techniques of c-axis-tilted ScAlN films by conventional RF magnetron sputtering\",\"authors\":\"K. Arakawa, T. Yanagitani, K. Kano, Akihiko Teshigahara, M. Akiyama\",\"doi\":\"10.1109/ULTSYM.2010.5935747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is difficult to synthesize c-axis tilted ScAlN films by using co-sputtering because unidirectional oblique incident of sputtered particles is needed to obtain c-axis tilted structure. To realize the oblique incident single source sputtering technique was proposed for c-axis tilted film deposition. ScAl alloy target was used to achieve ScAlN film synthesis instead of co-sputtering. As a result c-axis highly tilted ScAlN film (tilt angle =33 °) was obtained by using this deposition technique. From the result of film transducer loss measurement we found that longitudinal and shear elasticity of AlN decreases by adding Sc. c-axis highly tilted ScAlN film showed giant k15' values of 0.32 in spite of its low degree of orientation.\",\"PeriodicalId\":6437,\"journal\":{\"name\":\"2010 IEEE International Ultrasonics Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Ultrasonics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2010.5935747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2010.5935747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deposition techniques of c-axis-tilted ScAlN films by conventional RF magnetron sputtering
It is difficult to synthesize c-axis tilted ScAlN films by using co-sputtering because unidirectional oblique incident of sputtered particles is needed to obtain c-axis tilted structure. To realize the oblique incident single source sputtering technique was proposed for c-axis tilted film deposition. ScAl alloy target was used to achieve ScAlN film synthesis instead of co-sputtering. As a result c-axis highly tilted ScAlN film (tilt angle =33 °) was obtained by using this deposition technique. From the result of film transducer loss measurement we found that longitudinal and shear elasticity of AlN decreases by adding Sc. c-axis highly tilted ScAlN film showed giant k15' values of 0.32 in spite of its low degree of orientation.