医疗放射工作者DNA碱基切除修复基因xrcc1的遗传多态性

H. N. E. Surniyantoro, Y. Lusiyanti, W. Mailana, D. Tetriana
{"title":"医疗放射工作者DNA碱基切除修复基因xrcc1的遗传多态性","authors":"H. N. E. Surniyantoro, Y. Lusiyanti, W. Mailana, D. Tetriana","doi":"10.19106/JMEDSCI005104201903","DOIUrl":null,"url":null,"abstract":"X-rays repair cross-complementing group 1 (XRCC1) gene is one of the gene that plays an important role in base excision repair system (BER) and DNA repair both single and double strand breaks. Individuals with XRCC1 exon 10 (Arg399Gln) gene polymorphisms and carrying 399Gln allele variants (A allele) have a greater risk of DNA damage than their wildtype, 399Arg. The aim of this study was to examine the genotype frequencies of single nucleotide polymorphisms (SNPs) of XRCC1 exon 10 among medical radiation workers. This study involved 77 samples from several hospitals in Indonesia. Genotyping of XRCC1 exon 10 gene polymorphism was performed using PCR-RFLP. Individuals carryingA allele had lower frequency than that is carrying their wildtype of 399Arg (0.39 vs. 0.61). The results indicated that 39% of medical radiation workers had a risk of repair efficiency of DNA damage and might influence an individual's risk of cancer. Ionizing radiation induces many types of damage to DNA, requiring multiple repair pathways to restore genomics integrity. Other important genes/pathways, especially those for DNA double-strand break repair, might also play a role and should be further investigated. Furthermore, polymorphisms leading to inefficient DNA repair might also be associated with late reactions to radiotherapy.","PeriodicalId":17474,"journal":{"name":"Journal of thee Medical Sciences (Berkala Ilmu Kedokteran)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Genetic polymorphism in DNA base excision repair gene XRCC1among medical radiation workers\",\"authors\":\"H. N. E. Surniyantoro, Y. Lusiyanti, W. Mailana, D. Tetriana\",\"doi\":\"10.19106/JMEDSCI005104201903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"X-rays repair cross-complementing group 1 (XRCC1) gene is one of the gene that plays an important role in base excision repair system (BER) and DNA repair both single and double strand breaks. Individuals with XRCC1 exon 10 (Arg399Gln) gene polymorphisms and carrying 399Gln allele variants (A allele) have a greater risk of DNA damage than their wildtype, 399Arg. The aim of this study was to examine the genotype frequencies of single nucleotide polymorphisms (SNPs) of XRCC1 exon 10 among medical radiation workers. This study involved 77 samples from several hospitals in Indonesia. Genotyping of XRCC1 exon 10 gene polymorphism was performed using PCR-RFLP. Individuals carryingA allele had lower frequency than that is carrying their wildtype of 399Arg (0.39 vs. 0.61). The results indicated that 39% of medical radiation workers had a risk of repair efficiency of DNA damage and might influence an individual's risk of cancer. Ionizing radiation induces many types of damage to DNA, requiring multiple repair pathways to restore genomics integrity. Other important genes/pathways, especially those for DNA double-strand break repair, might also play a role and should be further investigated. Furthermore, polymorphisms leading to inefficient DNA repair might also be associated with late reactions to radiotherapy.\",\"PeriodicalId\":17474,\"journal\":{\"name\":\"Journal of thee Medical Sciences (Berkala Ilmu Kedokteran)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of thee Medical Sciences (Berkala Ilmu Kedokteran)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19106/JMEDSCI005104201903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thee Medical Sciences (Berkala Ilmu Kedokteran)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19106/JMEDSCI005104201903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

x射线修复交叉互补组1 (XRCC1)基因是在碱基切除修复系统(BER)和DNA单双链断裂修复中起重要作用的基因之一。具有XRCC1外显子10 (Arg399Gln)基因多态性和携带399Gln等位基因变异(A等位基因)的个体比其野生型399Arg具有更大的DNA损伤风险。本研究的目的是检测XRCC1外显子10的单核苷酸多态性(snp)在医疗放射工作者中的基因型频率。这项研究涉及来自印度尼西亚几家医院的77个样本。采用PCR-RFLP对XRCC1外显子10基因多态性进行基因分型。携带a等位基因的个体比携带其野生型399Arg的个体频率低(0.39比0.61)。结果表明,39%的医疗放射工作者存在DNA损伤修复效率的风险,并可能影响个体的癌症风险。电离辐射诱导多种类型的DNA损伤,需要多种修复途径来恢复基因组完整性。其他重要的基因/途径,特别是DNA双链断裂修复的基因/途径,也可能发挥作用,应进一步研究。此外,导致DNA修复效率低下的多态性也可能与放射治疗的晚期反应有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic polymorphism in DNA base excision repair gene XRCC1among medical radiation workers
X-rays repair cross-complementing group 1 (XRCC1) gene is one of the gene that plays an important role in base excision repair system (BER) and DNA repair both single and double strand breaks. Individuals with XRCC1 exon 10 (Arg399Gln) gene polymorphisms and carrying 399Gln allele variants (A allele) have a greater risk of DNA damage than their wildtype, 399Arg. The aim of this study was to examine the genotype frequencies of single nucleotide polymorphisms (SNPs) of XRCC1 exon 10 among medical radiation workers. This study involved 77 samples from several hospitals in Indonesia. Genotyping of XRCC1 exon 10 gene polymorphism was performed using PCR-RFLP. Individuals carryingA allele had lower frequency than that is carrying their wildtype of 399Arg (0.39 vs. 0.61). The results indicated that 39% of medical radiation workers had a risk of repair efficiency of DNA damage and might influence an individual's risk of cancer. Ionizing radiation induces many types of damage to DNA, requiring multiple repair pathways to restore genomics integrity. Other important genes/pathways, especially those for DNA double-strand break repair, might also play a role and should be further investigated. Furthermore, polymorphisms leading to inefficient DNA repair might also be associated with late reactions to radiotherapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Congenital cystic adenomatoid malformation: a case report Prostate cancer profile in Dr. Sardjito General Yogyakarta Risk factors of sensory hearing loss in nasopharyngeal carcinoma patients obtaining conventional radiotherapy Infant appendicitis with perforation: a case report Prevalence of hypertension and its risk factors among obese adolescents in Yogyakarta, Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1