新兴沉浸式通信系统:概述、分类和QoE评估的良好实践

IF 1.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Frontiers in signal processing Pub Date : 2022-05-12 DOI:10.3389/frsip.2022.917684
P. Pérez, E. González-Sosa, Jes'us Guti'errez, Narciso García
{"title":"新兴沉浸式通信系统:概述、分类和QoE评估的良好实践","authors":"P. Pérez, E. González-Sosa, Jes'us Guti'errez, Narciso García","doi":"10.3389/frsip.2022.917684","DOIUrl":null,"url":null,"abstract":"Several technological and scientific advances have been achieved recently in the fields of immersive systems (e.g., 360-degree/multiview video systems, augmented/mixed/virtual reality systems, immersive audio-haptic systems, etc.), which are offering new possibilities to applications and services in different communication domains, such as entertainment, virtual conferencing, working meetings, social relations, healthcare, and industry. Users of these immersive technologies can explore and experience the stimuli in a more interactive and personalized way than previous technologies (e.g., 2D video). Thus, considering the new technological challenges related to these systems and the new perceptual dimensions and interaction behaviors involved, a deep understanding of the users’ Quality of Experience (QoE) is required to satisfy their demands and expectations. In this sense, it is essential to foster the research on evaluating the QoE of immersive communication systems, since this will provide useful outcomes to optimize them and to identify the factors that can deteriorate the user experience. With this aim, subjective tests are usually performed following standard methodologies (e.g., ITU recommendations), which are designed for specific technologies and services. Although numerous user studies have been already published, there are no recommendations or standards that define common testing methodologies to be applied to evaluate immersive communication systems, such as those developed for images and video. Taking this into account, a revision of the QoE evaluation methods designed for previous technologies is required to develop robust and reliable methodologies for immersive communication systems. Thus, the objective of this paper is to provide an overview of existing immersive communication systems and related user studies, which can help on the definition of basic guidelines and testing methodologies to be used when performing user tests of immersive communication systems, such as 360-degree video-based telepresence, avatar-based social VR, cooperative AR, etc.","PeriodicalId":93557,"journal":{"name":"Frontiers in signal processing","volume":"16 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Emerging Immersive Communication Systems: Overview, Taxonomy, and Good Practices for QoE Assessment\",\"authors\":\"P. Pérez, E. González-Sosa, Jes'us Guti'errez, Narciso García\",\"doi\":\"10.3389/frsip.2022.917684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several technological and scientific advances have been achieved recently in the fields of immersive systems (e.g., 360-degree/multiview video systems, augmented/mixed/virtual reality systems, immersive audio-haptic systems, etc.), which are offering new possibilities to applications and services in different communication domains, such as entertainment, virtual conferencing, working meetings, social relations, healthcare, and industry. Users of these immersive technologies can explore and experience the stimuli in a more interactive and personalized way than previous technologies (e.g., 2D video). Thus, considering the new technological challenges related to these systems and the new perceptual dimensions and interaction behaviors involved, a deep understanding of the users’ Quality of Experience (QoE) is required to satisfy their demands and expectations. In this sense, it is essential to foster the research on evaluating the QoE of immersive communication systems, since this will provide useful outcomes to optimize them and to identify the factors that can deteriorate the user experience. With this aim, subjective tests are usually performed following standard methodologies (e.g., ITU recommendations), which are designed for specific technologies and services. Although numerous user studies have been already published, there are no recommendations or standards that define common testing methodologies to be applied to evaluate immersive communication systems, such as those developed for images and video. Taking this into account, a revision of the QoE evaluation methods designed for previous technologies is required to develop robust and reliable methodologies for immersive communication systems. Thus, the objective of this paper is to provide an overview of existing immersive communication systems and related user studies, which can help on the definition of basic guidelines and testing methodologies to be used when performing user tests of immersive communication systems, such as 360-degree video-based telepresence, avatar-based social VR, cooperative AR, etc.\",\"PeriodicalId\":93557,\"journal\":{\"name\":\"Frontiers in signal processing\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frsip.2022.917684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in signal processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsip.2022.917684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 8

摘要

近年来,沉浸式系统(如360度/多视角视频系统、增强/混合/虚拟现实系统、沉浸式视听触觉系统等)领域取得了若干技术和科学进步,为娱乐、虚拟会议、工作会议、社会关系、医疗保健和工业等不同通信领域的应用和服务提供了新的可能性。这些沉浸式技术的用户可以以比以前的技术(例如,2D视频)更具互动性和个性化的方式探索和体验刺激。因此,考虑到与这些系统相关的新技术挑战以及涉及的新感知维度和交互行为,需要深入了解用户的体验质量(QoE)以满足他们的需求和期望。从这个意义上说,促进对沉浸式通信系统的QoE评估的研究是至关重要的,因为这将为优化它们提供有用的结果,并确定可能恶化用户体验的因素。为此目的,通常按照为特定技术和服务设计的标准方法(例如国际电联的建议)进行主观测试。虽然已经发表了许多用户研究,但没有建议或标准定义用于评估沉浸式通信系统的通用测试方法,例如为图像和视频开发的测试方法。考虑到这一点,需要对先前技术设计的QoE评估方法进行修订,以便为沉浸式通信系统开发健壮可靠的方法。因此,本文的目的是提供现有沉浸式通信系统和相关用户研究的概述,这可以帮助定义在执行沉浸式通信系统的用户测试时使用的基本指南和测试方法,例如基于360度视频的远程呈现,基于虚拟化身的社交VR,协作AR等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emerging Immersive Communication Systems: Overview, Taxonomy, and Good Practices for QoE Assessment
Several technological and scientific advances have been achieved recently in the fields of immersive systems (e.g., 360-degree/multiview video systems, augmented/mixed/virtual reality systems, immersive audio-haptic systems, etc.), which are offering new possibilities to applications and services in different communication domains, such as entertainment, virtual conferencing, working meetings, social relations, healthcare, and industry. Users of these immersive technologies can explore and experience the stimuli in a more interactive and personalized way than previous technologies (e.g., 2D video). Thus, considering the new technological challenges related to these systems and the new perceptual dimensions and interaction behaviors involved, a deep understanding of the users’ Quality of Experience (QoE) is required to satisfy their demands and expectations. In this sense, it is essential to foster the research on evaluating the QoE of immersive communication systems, since this will provide useful outcomes to optimize them and to identify the factors that can deteriorate the user experience. With this aim, subjective tests are usually performed following standard methodologies (e.g., ITU recommendations), which are designed for specific technologies and services. Although numerous user studies have been already published, there are no recommendations or standards that define common testing methodologies to be applied to evaluate immersive communication systems, such as those developed for images and video. Taking this into account, a revision of the QoE evaluation methods designed for previous technologies is required to develop robust and reliable methodologies for immersive communication systems. Thus, the objective of this paper is to provide an overview of existing immersive communication systems and related user studies, which can help on the definition of basic guidelines and testing methodologies to be used when performing user tests of immersive communication systems, such as 360-degree video-based telepresence, avatar-based social VR, cooperative AR, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A mini-review of signal processing techniques for RIS-assisted near field THz communication Editorial: Signal processing in computational video and video streaming Editorial: Editor’s challenge—image processing Improved circuitry and post-processing for interleaved fast-scan cyclic voltammetry and electrophysiology measurements Bounds for Haralick features in synthetic images with sinusoidal gradients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1