A. Zhan, Fei Du, Zhaozheng Chen, Guanxiang Yin, Meng Wang, Yuejin Zhang
{"title":"基于GA-SVR的交通流预测方法","authors":"A. Zhan, Fei Du, Zhaozheng Chen, Guanxiang Yin, Meng Wang, Yuejin Zhang","doi":"10.3233/jhs-220682","DOIUrl":null,"url":null,"abstract":"This paper uses support vector regression (SVR) to predict short-term traffic flow, and studies the feasibility of SVR in short-term traffic flow prediction. The short-time traffic flow has many influencing factors, which are characterized by nonlinearity, randomness and periodicity. Therefore, SVR algorithm has advantages in dealing with such problems. In order to improve the prediction accuracy of the SVR, this paper uses genetic algorithm (GA) to optimize the SVR and other parameters to obtain the global optimal solution. The optimal parameters are used to construct the SVR prediction model. This paper selects the traffic flow data of the Jiangxi Provincial Transportation Department database to verify the feasibility and effectiveness of the proposed model.","PeriodicalId":54809,"journal":{"name":"Journal of High Speed Networks","volume":"47 4 1","pages":"97-106"},"PeriodicalIF":0.7000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A traffic flow forecasting method based on the GA-SVR\",\"authors\":\"A. Zhan, Fei Du, Zhaozheng Chen, Guanxiang Yin, Meng Wang, Yuejin Zhang\",\"doi\":\"10.3233/jhs-220682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses support vector regression (SVR) to predict short-term traffic flow, and studies the feasibility of SVR in short-term traffic flow prediction. The short-time traffic flow has many influencing factors, which are characterized by nonlinearity, randomness and periodicity. Therefore, SVR algorithm has advantages in dealing with such problems. In order to improve the prediction accuracy of the SVR, this paper uses genetic algorithm (GA) to optimize the SVR and other parameters to obtain the global optimal solution. The optimal parameters are used to construct the SVR prediction model. This paper selects the traffic flow data of the Jiangxi Provincial Transportation Department database to verify the feasibility and effectiveness of the proposed model.\",\"PeriodicalId\":54809,\"journal\":{\"name\":\"Journal of High Speed Networks\",\"volume\":\"47 4 1\",\"pages\":\"97-106\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Speed Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jhs-220682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Speed Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jhs-220682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A traffic flow forecasting method based on the GA-SVR
This paper uses support vector regression (SVR) to predict short-term traffic flow, and studies the feasibility of SVR in short-term traffic flow prediction. The short-time traffic flow has many influencing factors, which are characterized by nonlinearity, randomness and periodicity. Therefore, SVR algorithm has advantages in dealing with such problems. In order to improve the prediction accuracy of the SVR, this paper uses genetic algorithm (GA) to optimize the SVR and other parameters to obtain the global optimal solution. The optimal parameters are used to construct the SVR prediction model. This paper selects the traffic flow data of the Jiangxi Provincial Transportation Department database to verify the feasibility and effectiveness of the proposed model.
期刊介绍:
The Journal of High Speed Networks is an international archival journal, active since 1992, providing a publication vehicle for covering a large number of topics of interest in the high performance networking and communication area. Its audience includes researchers, managers as well as network designers and operators. The main goal will be to provide timely dissemination of information and scientific knowledge.
The journal will publish contributed papers on novel research, survey and position papers on topics of current interest, technical notes, and short communications to report progress on long-term projects. Submissions to the Journal will be refereed consistently with the review process of leading technical journals, based on originality, significance, quality, and clarity.
The journal will publish papers on a number of topics ranging from design to practical experiences with operational high performance/speed networks.