二维方形晶格和六边形硫族锌在第一性原理计算下的弹性、光学和热电性质

Pankaj Kumar, D. R. Roy
{"title":"二维方形晶格和六边形硫族锌在第一性原理计算下的弹性、光学和热电性质","authors":"Pankaj Kumar, D. R. Roy","doi":"10.1002/pssb.202300046","DOIUrl":null,"url":null,"abstract":"Herein, elastic, optical, and thermoelectric properties of zinc chalcogenides with 2D square lattice and hexagonal phases [s‐ and h‐ZnX (X = GrVI)] are reported. The s‐ZnX and h‐ZnX structures are achieved to be dynamically stable, according to the phonon dispersion studies. All s‐ and h‐ZnX compounds are found to be semiconductor, with direct and indirect bandgaps ranging from 0.81 to 2.77 eV under PBE and 1.70 to 4.15 eV by HSE06 calculations. The effective mass, mobility, and relaxation time of electron and hole carriers in the band structures of s‐ and h‐ZnX are investigated to gain a better insight of these materials. In addition to the phonon dispersion analysis, their mechanical stability in terms of elastic properties is evaluated, and the resulting elastic parameters validate their mechanical stability. The optical properties of s‐ and h‐ZnX are inspected in the occurrence of field polarizations across parallel and perpendicular directions. At room temperature, s‐ZnTe compound has an optimum figure of merit (ZT) value, indicating it as the superlative thermoelectric material in the entire series. These compounds may also be explored in ultraviolet lasers, solar cells, electronic image displays, high‐density optical memory, photodetectors, and solid‐state laser devices.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"404 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic, Optical, and Thermoelectric Properties of 2D Square Lattice and Hexagonal Zinc Chalcogenides under First‐Principles Calculations\",\"authors\":\"Pankaj Kumar, D. R. Roy\",\"doi\":\"10.1002/pssb.202300046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, elastic, optical, and thermoelectric properties of zinc chalcogenides with 2D square lattice and hexagonal phases [s‐ and h‐ZnX (X = GrVI)] are reported. The s‐ZnX and h‐ZnX structures are achieved to be dynamically stable, according to the phonon dispersion studies. All s‐ and h‐ZnX compounds are found to be semiconductor, with direct and indirect bandgaps ranging from 0.81 to 2.77 eV under PBE and 1.70 to 4.15 eV by HSE06 calculations. The effective mass, mobility, and relaxation time of electron and hole carriers in the band structures of s‐ and h‐ZnX are investigated to gain a better insight of these materials. In addition to the phonon dispersion analysis, their mechanical stability in terms of elastic properties is evaluated, and the resulting elastic parameters validate their mechanical stability. The optical properties of s‐ and h‐ZnX are inspected in the occurrence of field polarizations across parallel and perpendicular directions. At room temperature, s‐ZnTe compound has an optimum figure of merit (ZT) value, indicating it as the superlative thermoelectric material in the entire series. These compounds may also be explored in ultraviolet lasers, solar cells, electronic image displays, high‐density optical memory, photodetectors, and solid‐state laser devices.\",\"PeriodicalId\":20107,\"journal\":{\"name\":\"physica status solidi (b)\",\"volume\":\"404 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"physica status solidi (b)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202300046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (b)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssb.202300046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了具有二维方形晶格和六边形相的硫族锌[s‐和h‐ZnX (X = GrVI)]的弹性、光学和热电性质。根据声子色散的研究,s‐ZnX和h‐ZnX结构是动态稳定的。所有的s‐和h‐ZnX化合物都被发现是半导体的,在PBE下的直接和间接带隙范围为0.81 ~ 2.77 eV,在HSE06计算中为1.70 ~ 4.15 eV。研究了s‐和h‐ZnX带结构中电子载流子和空穴载流子的有效质量、迁移率和弛豫时间,以便更好地了解这些材料。除了声子色散分析外,还从弹性特性的角度评估了它们的力学稳定性,得到的弹性参数验证了它们的力学稳定性。研究了s‐和h‐ZnX在平行和垂直方向上发生的场偏振的光学性质。在室温下,s‐ZnTe化合物具有最佳性能值(ZT),表明它是整个系列中最好的热电材料。这些化合物也可用于紫外激光器、太阳能电池、电子图像显示器、高密度光存储器、光电探测器和固态激光器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elastic, Optical, and Thermoelectric Properties of 2D Square Lattice and Hexagonal Zinc Chalcogenides under First‐Principles Calculations
Herein, elastic, optical, and thermoelectric properties of zinc chalcogenides with 2D square lattice and hexagonal phases [s‐ and h‐ZnX (X = GrVI)] are reported. The s‐ZnX and h‐ZnX structures are achieved to be dynamically stable, according to the phonon dispersion studies. All s‐ and h‐ZnX compounds are found to be semiconductor, with direct and indirect bandgaps ranging from 0.81 to 2.77 eV under PBE and 1.70 to 4.15 eV by HSE06 calculations. The effective mass, mobility, and relaxation time of electron and hole carriers in the band structures of s‐ and h‐ZnX are investigated to gain a better insight of these materials. In addition to the phonon dispersion analysis, their mechanical stability in terms of elastic properties is evaluated, and the resulting elastic parameters validate their mechanical stability. The optical properties of s‐ and h‐ZnX are inspected in the occurrence of field polarizations across parallel and perpendicular directions. At room temperature, s‐ZnTe compound has an optimum figure of merit (ZT) value, indicating it as the superlative thermoelectric material in the entire series. These compounds may also be explored in ultraviolet lasers, solar cells, electronic image displays, high‐density optical memory, photodetectors, and solid‐state laser devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Activation Energy of DC Hopping Conductivity of Lightly Doped Weakly Compensated Crystalline Semiconductors Learning Model Based on Electrochemical Metallization Memristor with Cluster Residual Effect Incorporation and Interaction of Co‐Doped Be and Mg in GaN Grown by Metal‐Organic Chemic Vapor Deposition Extending the Tight‐Binding Model by Discrete Fractional Fourier Transform Theoretical Study of Magnetization and Electrical Conductivity of Ion‐Doped KBiFe2O5 Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1