{"title":"核-多壳纳米线发光二极管的物理模拟","authors":"F. Romer, M. Deppner, B. Witzigmann","doi":"10.1109/NUSOD.2010.5595652","DOIUrl":null,"url":null,"abstract":"We report on the computational analysis of a triangular core-multishell nanowire light emitting diode with three joint InxGa1−xN active layers. The different crystal orientations of these layers lead to different polarization induced internal fields and transition energies. The simulation approach accounts for these effects by including the calculation of strained band edges and piezo potentials and provides a self-consistent model for the coupled 3D bulk and 2D quantized structure. The simulator is targeted to a comprehensive analysis of luminescence including the spatial variation of transition energies and carrier densities.","PeriodicalId":6780,"journal":{"name":"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"117 1","pages":"91-92"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Physics-based simulation of a core-multishell nanowire light emitting diode\",\"authors\":\"F. Romer, M. Deppner, B. Witzigmann\",\"doi\":\"10.1109/NUSOD.2010.5595652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on the computational analysis of a triangular core-multishell nanowire light emitting diode with three joint InxGa1−xN active layers. The different crystal orientations of these layers lead to different polarization induced internal fields and transition energies. The simulation approach accounts for these effects by including the calculation of strained band edges and piezo potentials and provides a self-consistent model for the coupled 3D bulk and 2D quantized structure. The simulator is targeted to a comprehensive analysis of luminescence including the spatial variation of transition energies and carrier densities.\",\"PeriodicalId\":6780,\"journal\":{\"name\":\"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"volume\":\"117 1\",\"pages\":\"91-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2010.5595652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2010.5595652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physics-based simulation of a core-multishell nanowire light emitting diode
We report on the computational analysis of a triangular core-multishell nanowire light emitting diode with three joint InxGa1−xN active layers. The different crystal orientations of these layers lead to different polarization induced internal fields and transition energies. The simulation approach accounts for these effects by including the calculation of strained band edges and piezo potentials and provides a self-consistent model for the coupled 3D bulk and 2D quantized structure. The simulator is targeted to a comprehensive analysis of luminescence including the spatial variation of transition energies and carrier densities.