源IP NAT的排队理论分析

C. Westphal, C. Perkins
{"title":"源IP NAT的排队理论分析","authors":"C. Westphal, C. Perkins","doi":"10.1109/ICC.2010.5501817","DOIUrl":null,"url":null,"abstract":"The number of devices connected to the Internet has outstripped the number of effectively assignable IPv4 addresses. In order to be globally reachable, many devices must share the same IPv4 address; current mechanisms only provide reachability when the device sharing the IPv4 address itself initiates communication. We describe a mechanism to make nodes behind a NAT globally reachable, even when communications are initiated from the global Internet. The intended application of the mechanism, denoted SIPNAT, is to allow for the first time bidirectional global reachability of IPv6 addresses by nodes in the global IPv4 Internet, in a scalable manner, thus resolving the major issue associated with IPv4-IPv6 translation. SIPNAT involves filtering flows at the gateway between the IPv4 and IPv6 domain through a combination of DNS request and timing information for the IPv4 initiated connection (the IPv6 to IPv4 connections are performed using typical NAT mechanisms, where the IPv6 domain takes the role of the private address space). We study the performance of the SIPNAT mechanism using queuing theoretic analysis, and show that our SIPNAT model is accurate on actual data traces.","PeriodicalId":6405,"journal":{"name":"2010 IEEE International Conference on Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Queueing Theoretic Analysis of Source IP NAT\",\"authors\":\"C. Westphal, C. Perkins\",\"doi\":\"10.1109/ICC.2010.5501817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of devices connected to the Internet has outstripped the number of effectively assignable IPv4 addresses. In order to be globally reachable, many devices must share the same IPv4 address; current mechanisms only provide reachability when the device sharing the IPv4 address itself initiates communication. We describe a mechanism to make nodes behind a NAT globally reachable, even when communications are initiated from the global Internet. The intended application of the mechanism, denoted SIPNAT, is to allow for the first time bidirectional global reachability of IPv6 addresses by nodes in the global IPv4 Internet, in a scalable manner, thus resolving the major issue associated with IPv4-IPv6 translation. SIPNAT involves filtering flows at the gateway between the IPv4 and IPv6 domain through a combination of DNS request and timing information for the IPv4 initiated connection (the IPv6 to IPv4 connections are performed using typical NAT mechanisms, where the IPv6 domain takes the role of the private address space). We study the performance of the SIPNAT mechanism using queuing theoretic analysis, and show that our SIPNAT model is accurate on actual data traces.\",\"PeriodicalId\":6405,\"journal\":{\"name\":\"2010 IEEE International Conference on Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.2010.5501817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2010.5501817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

连接到Internet的设备数量已经超过了可有效分配的IPv4地址的数量。为了实现全局可达,许多设备必须共享相同的IPv4地址;目前的机制只有在共享IPv4地址的设备本身发起通信时才提供可达性。我们描述了一种机制,使NAT后面的节点可以全球访问,即使通信是从全球Internet发起的。该机制的预期应用,被称为SIPNAT,是第一次允许全球IPv4互联网中的节点以可扩展的方式双向全球可达IPv6地址,从而解决与IPv4-IPv6转换相关的主要问题。SIPNAT通过结合IPv4发起连接的DNS请求和定时信息对IPv4和IPv6域之间的网关流进行过滤(IPv6到IPv4的连接使用典型的NAT机制,其中IPv6域充当私有地址空间)。我们利用排队理论分析研究了SIPNAT机制的性能,并证明了我们的SIPNAT模型在实际数据轨迹上是准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Queueing Theoretic Analysis of Source IP NAT
The number of devices connected to the Internet has outstripped the number of effectively assignable IPv4 addresses. In order to be globally reachable, many devices must share the same IPv4 address; current mechanisms only provide reachability when the device sharing the IPv4 address itself initiates communication. We describe a mechanism to make nodes behind a NAT globally reachable, even when communications are initiated from the global Internet. The intended application of the mechanism, denoted SIPNAT, is to allow for the first time bidirectional global reachability of IPv6 addresses by nodes in the global IPv4 Internet, in a scalable manner, thus resolving the major issue associated with IPv4-IPv6 translation. SIPNAT involves filtering flows at the gateway between the IPv4 and IPv6 domain through a combination of DNS request and timing information for the IPv4 initiated connection (the IPv6 to IPv4 connections are performed using typical NAT mechanisms, where the IPv6 domain takes the role of the private address space). We study the performance of the SIPNAT mechanism using queuing theoretic analysis, and show that our SIPNAT model is accurate on actual data traces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Optimal Server Selection Algorithm for P2P IPTV over Fiber to the Node (FTTN) Networks Joint Discrete Power-Level and Delay Optimization for Network Coded Wireless Communications Throughput and Stability Improvements of Slotted ALOHA Based Wireless Networks under the Random Packet Destruction Dos Attack TOA Based Joint Synchronization and Localization Amplify-And-Forward MIMO Relaying with OSTBC over Nakagami-m Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1