微弧氧化电极氧化膜对水处理的影响

Zhiyu Yan, Manting Men, Bing Sun, Qiao-min Wang, Yue Han, M. Wen
{"title":"微弧氧化电极氧化膜对水处理的影响","authors":"Zhiyu Yan, Manting Men, Bing Sun, Qiao-min Wang, Yue Han, M. Wen","doi":"10.1515/jaots-2016-0189","DOIUrl":null,"url":null,"abstract":"Abstract This study investigated the characteristics of liquid phase plasma-electrode catalysis system formed by micro-arc oxidation with titanium-aluminum (Ti-Al) alloy as the anode. Under different power supplies, the wastewater from printing and textile dyeing industries simulated with Rhodamine B (RhB) dye was decolored. We evaluated the impact of oxide film formed on the electrodes on the plasma effects. Our findings showed that repeated applications of opposite voltages could damage the insulating oxide film formed on the electrode surface, contributing to its breakdown and enhancing micro-arc oxidation. Intermittent power supply also modulated the coverage of oxide film by enhancing the cooling of electrolyte. Morphological study of oxide film revealed the presences of rutile and anatase titanium dioxide (TiO2) in the oxide film, which is conducive to various catalytic functions in the plasma environment.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effect of electrode oxide film in micro arc oxidation on water treatment\",\"authors\":\"Zhiyu Yan, Manting Men, Bing Sun, Qiao-min Wang, Yue Han, M. Wen\",\"doi\":\"10.1515/jaots-2016-0189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study investigated the characteristics of liquid phase plasma-electrode catalysis system formed by micro-arc oxidation with titanium-aluminum (Ti-Al) alloy as the anode. Under different power supplies, the wastewater from printing and textile dyeing industries simulated with Rhodamine B (RhB) dye was decolored. We evaluated the impact of oxide film formed on the electrodes on the plasma effects. Our findings showed that repeated applications of opposite voltages could damage the insulating oxide film formed on the electrode surface, contributing to its breakdown and enhancing micro-arc oxidation. Intermittent power supply also modulated the coverage of oxide film by enhancing the cooling of electrolyte. Morphological study of oxide film revealed the presences of rutile and anatase titanium dioxide (TiO2) in the oxide film, which is conducive to various catalytic functions in the plasma environment.\",\"PeriodicalId\":14870,\"journal\":{\"name\":\"Journal of Advanced Oxidation Technologies\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Oxidation Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jaots-2016-0189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2016-0189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 4

摘要

摘要研究了以钛铝(Ti-Al)合金为阳极,微弧氧化形成的液相等离子体-电极催化体系的特性。用罗丹明B (Rhodamine B, RhB)染料模拟印染废水,在不同电源条件下对废水进行脱色。我们评估了电极上形成的氧化膜对等离子体效应的影响。我们的研究结果表明,反复施加相反的电压会破坏电极表面形成的绝缘氧化膜,导致其击穿并增强微弧氧化。间歇电源还通过增强电解液的冷却来调节氧化膜的覆盖。氧化膜形态研究表明,氧化膜中存在金红石型和锐钛型二氧化钛(TiO2),有利于在等离子体环境中发挥各种催化功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of electrode oxide film in micro arc oxidation on water treatment
Abstract This study investigated the characteristics of liquid phase plasma-electrode catalysis system formed by micro-arc oxidation with titanium-aluminum (Ti-Al) alloy as the anode. Under different power supplies, the wastewater from printing and textile dyeing industries simulated with Rhodamine B (RhB) dye was decolored. We evaluated the impact of oxide film formed on the electrodes on the plasma effects. Our findings showed that repeated applications of opposite voltages could damage the insulating oxide film formed on the electrode surface, contributing to its breakdown and enhancing micro-arc oxidation. Intermittent power supply also modulated the coverage of oxide film by enhancing the cooling of electrolyte. Morphological study of oxide film revealed the presences of rutile and anatase titanium dioxide (TiO2) in the oxide film, which is conducive to various catalytic functions in the plasma environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.88
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs
期刊最新文献
Catalytic Ozonation of Ciprofloxacin over Cerium Oxide Modified SBA-15 and Toxicity Assessment towards E. coli Degradation of C.I. Acid Red 51 and C.I. Acid Blue 74 in Aqueous Solution by Combination of Hydrogen Peroxide, Nanocrystallite Zinc Oxide and Ultrasound Irradiation Degradation of Cyanide using Stabilized S, N-TiO2 Nanoparticles by Visible and Sun Light Environmental Matrix Effects on Degradation Kinetics of Ibuprofen in a UV/ Persulfate System An Overview of Ozone Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1