通过相似问题检索扩大在线问题回答

Chase Geigle, ChengXiang Zhai
{"title":"通过相似问题检索扩大在线问题回答","authors":"Chase Geigle, ChengXiang Zhai","doi":"10.1145/2876034.2893428","DOIUrl":null,"url":null,"abstract":"Faced with growing class sizes and the dawn of the MOOC, educators are in need of tools to help them cope with the growing number of questions asked in large classes since manually answering all the questions in a timely manner is infeasible. In this paper, we propose to exploit historical question/answer data accumulated for the same or similar classes as a basis for automatically answering previously asked questions via the use of information retrieval techniques. We further propose to leverage resolved questions to create test collections for quantitative evaluation of a question retrieval algorithm without requiring additional human effort. Using this evaluation methodology, we study the effectiveness of state of the art retrieval techniques for this special retrieval task, and perform error analysis to inform future directions.","PeriodicalId":20739,"journal":{"name":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Scaling up Online Question Answering via Similar Question Retrieval\",\"authors\":\"Chase Geigle, ChengXiang Zhai\",\"doi\":\"10.1145/2876034.2893428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Faced with growing class sizes and the dawn of the MOOC, educators are in need of tools to help them cope with the growing number of questions asked in large classes since manually answering all the questions in a timely manner is infeasible. In this paper, we propose to exploit historical question/answer data accumulated for the same or similar classes as a basis for automatically answering previously asked questions via the use of information retrieval techniques. We further propose to leverage resolved questions to create test collections for quantitative evaluation of a question retrieval algorithm without requiring additional human effort. Using this evaluation methodology, we study the effectiveness of state of the art retrieval techniques for this special retrieval task, and perform error analysis to inform future directions.\",\"PeriodicalId\":20739,\"journal\":{\"name\":\"Proceedings of the Third (2016) ACM Conference on Learning @ Scale\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third (2016) ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2876034.2893428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2876034.2893428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

面对不断扩大的班级规模和MOOC的到来,教育工作者需要工具来帮助他们应对大班中越来越多的问题,因为及时手动回答所有问题是不可行的。在本文中,我们建议利用相同或类似类别积累的历史问题/答案数据,作为通过使用信息检索技术自动回答先前提出的问题的基础。我们进一步建议利用已解决的问题来创建测试集合,以便对问题检索算法进行定量评估,而不需要额外的人力。使用这种评估方法,我们研究了当前最先进的检索技术对这一特殊检索任务的有效性,并进行了错误分析,以指导未来的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scaling up Online Question Answering via Similar Question Retrieval
Faced with growing class sizes and the dawn of the MOOC, educators are in need of tools to help them cope with the growing number of questions asked in large classes since manually answering all the questions in a timely manner is infeasible. In this paper, we propose to exploit historical question/answer data accumulated for the same or similar classes as a basis for automatically answering previously asked questions via the use of information retrieval techniques. We further propose to leverage resolved questions to create test collections for quantitative evaluation of a question retrieval algorithm without requiring additional human effort. Using this evaluation methodology, we study the effectiveness of state of the art retrieval techniques for this special retrieval task, and perform error analysis to inform future directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online Urbanism: Interest-based Subcultures as Drivers of Informal Learning in an Online Community Course Builder Skill Maps A Preliminary Look at MOOC-associated Facebook Groups: Prevalence, Geographic Representation, and Homophily Profiling MOOC Course Returners: How Does Student Behavior Change Between Two Course Enrollments? AXIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1