风能管理中可调度能源的最优控制

Q3 Mathematics Stochastics and Quality Control Pub Date : 2019-06-01 DOI:10.1515/eqc-2019-0001
G. D’Amico, F. Petroni, R. A. Sobolewski
{"title":"风能管理中可调度能源的最优控制","authors":"G. D’Amico, F. Petroni, R. A. Sobolewski","doi":"10.1515/eqc-2019-0001","DOIUrl":null,"url":null,"abstract":"Abstract The major drawback of wind energy relies in its variability in time, which necessitates specific strategies to be settled. One such strategy can be the coordination of wind power production with a co-located power generation of dispatchable energy source (DES), e.g., thermal power station, combined heat and power plant, gas turbine or compressed air energy storage. In this paper, we consider an energy producer that generates power by means of a wind park and of a DES and sells the produced energy to an isolated grid. We determine the optimal quantity of energy produced by a DES, given the unit cost of this energy, that a power producer should buy and use to hedge against the risk inherent in the production of energy through wind turbines. We determine the optimal quantity by solving a static optimization problem taking into account the possible dependence between the amount of energy produced by wind turbines and electricity prices by using a copula function. Several particular cases are studied that allow the determination of the optimal solution in an analytical closed form. Finally, a numerical example concerning a real 48 MW wind farm located in Poland and Polish Power Exchange shows the possibility of implementing the model in real-life problems.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"11 1","pages":"19 - 34"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimal Control of a Dispatchable Energy Source for Wind Energy Management\",\"authors\":\"G. D’Amico, F. Petroni, R. A. Sobolewski\",\"doi\":\"10.1515/eqc-2019-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The major drawback of wind energy relies in its variability in time, which necessitates specific strategies to be settled. One such strategy can be the coordination of wind power production with a co-located power generation of dispatchable energy source (DES), e.g., thermal power station, combined heat and power plant, gas turbine or compressed air energy storage. In this paper, we consider an energy producer that generates power by means of a wind park and of a DES and sells the produced energy to an isolated grid. We determine the optimal quantity of energy produced by a DES, given the unit cost of this energy, that a power producer should buy and use to hedge against the risk inherent in the production of energy through wind turbines. We determine the optimal quantity by solving a static optimization problem taking into account the possible dependence between the amount of energy produced by wind turbines and electricity prices by using a copula function. Several particular cases are studied that allow the determination of the optimal solution in an analytical closed form. Finally, a numerical example concerning a real 48 MW wind farm located in Poland and Polish Power Exchange shows the possibility of implementing the model in real-life problems.\",\"PeriodicalId\":37499,\"journal\":{\"name\":\"Stochastics and Quality Control\",\"volume\":\"11 1\",\"pages\":\"19 - 34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Quality Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eqc-2019-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2019-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

风能的主要缺点在于其在时间上的可变性,这需要具体的策略来解决。一种这样的策略可以是将风力发电与可调度能源(DES)的协同发电协调起来,例如,热电站、热电联产电厂、燃气轮机或压缩空气储能。在本文中,我们考虑了一个能源生产商,它通过风电场和DES发电,并将生产的能源出售给一个孤立的电网。在给定该能源单位成本的情况下,我们确定了电力生产商应该购买和使用的最优DES发电量,以对冲通过风力涡轮机生产能源所固有的风险。考虑风电机组发电量与电价之间可能存在的依赖关系,通过求解静态优化问题,利用耦合函数确定最优量。研究了几种特殊情况,使其能够以解析封闭形式确定最优解。最后,以位于波兰和波兰电力交易所的实际48兆瓦风电场为例,说明了在实际问题中实施该模型的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Control of a Dispatchable Energy Source for Wind Energy Management
Abstract The major drawback of wind energy relies in its variability in time, which necessitates specific strategies to be settled. One such strategy can be the coordination of wind power production with a co-located power generation of dispatchable energy source (DES), e.g., thermal power station, combined heat and power plant, gas turbine or compressed air energy storage. In this paper, we consider an energy producer that generates power by means of a wind park and of a DES and sells the produced energy to an isolated grid. We determine the optimal quantity of energy produced by a DES, given the unit cost of this energy, that a power producer should buy and use to hedge against the risk inherent in the production of energy through wind turbines. We determine the optimal quantity by solving a static optimization problem taking into account the possible dependence between the amount of energy produced by wind turbines and electricity prices by using a copula function. Several particular cases are studied that allow the determination of the optimal solution in an analytical closed form. Finally, a numerical example concerning a real 48 MW wind farm located in Poland and Polish Power Exchange shows the possibility of implementing the model in real-life problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Quality Control
Stochastics and Quality Control Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.10
自引率
0.00%
发文量
12
期刊最新文献
Population Dependent Two-Sex Branching Process with Random Mating and Overlapping Generations Assessment of Reliability of Power Systems Under Adverse Weather Condition Using Markov System Dynamic Method On Subcritical Markov Branching Processes with a Specified Limiting Conditional Law A Bayesian Extended Exponentially Weighted Moving Average Control Chart Galton–Watson Theta-Processes in a Varying Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1