Larisa I. Belchinskaya, Konstantin V. Zhuzhukin, Konstantin A. Barkov, Sergey A. Ivkov, Vladimir A. Terekhov, E. P. Domashevskaya
{"title":"脉冲电磁场对天然铝硅酸盐、蒙特莫里洛尼特和帕利高尔特原子结构的影响","authors":"Larisa I. Belchinskaya, Konstantin V. Zhuzhukin, Konstantin A. Barkov, Sergey A. Ivkov, Vladimir A. Terekhov, E. P. Domashevskaya","doi":"10.17308/kcmf.2020.22/2525","DOIUrl":null,"url":null,"abstract":"Естественные и искусственные алюмосиликаты являются актуальными объектами исследования благодаря широкому использованию в медицине, пищевой и химической промышленностях, в сельском хозяйстве. Целью работы является исследование возможных изменений под воздействием слабого импульсного электромагнитного поля атомного строения порошкообразных образцов трех минералов: клиноптилолита NaKNa2Ca2(SiSi29Al7)О72·24H2O монтмориллонита, монтмориллонита Ca0.2( AlMg)2Si4O10(OH))2·4H2O и палыгорскита AlSiMgAlSi4O10(OH)4·H2O относящихся к группе природных алюмосиликатов,, относящихся к группе природных алюмосиликатов, в которых кремний-кислородные и алюминий-кислородные тетраэдры связаны между собой общим атомом кислорода.Результаты исследований методами рентгеновской дифракции и ультрамягкой рентгеновской эмиссионной спектроскопии показали, что через 48 часов после воздействия слабого импульсного электромагнитного поля 71 мТл в течение 30 секунд атомная и электронная подсистемы образцов минералов все еще сохраняли изменения. Влияние слабого импульсного электромагнитного поля на атомную структуру минералов проявилось по-разному в трех образцах в виде одной-двух дополнительных слабых свехструктурных линий на дифрактограммах. Влияние слабого импульсного электромагнитного поля на локальное окружение кремния атомами кислорода в кремний-кислородных тетраэдрах проявилось в виде изменений тонкой структуры спектров ультрамягкой рентгеновской эмиссионной спектроскопии кремния SiLSiL2,3, указывающих на восстановление стехиометрии субоксидов кремния SiO1.8 в составе алюмосиликатов исходных порошков в стехиометрию, равную или близкую диоксиду кремния SiO2, во всех трех минералах. \n \n \n \n \nЛИТЕРАТУРА \n \nГак Е. Рик Т. О влиянии постоянного магнитного поля на кинетику движения ионов в водных растворах сильных электролитов. Доклады АН СССР. 1967;175(4): 856–858. \nМартынова О. Гусев Б. Леонтьев Е. К вопросу о механизме влияния магнитного поля на водные растворы солей. Успехи физических наук. 1969;98: 25–31. \nЧеснокова Л. Вопросы теории и практики магнитной обработки воды и водных систем. М.:.: Цветметинформация с.; 1971. 75 с. \nKronenberg K. Experimental evidence for the effects of magnetic fields on moving water. IEEE Transactions on Magnetics. 1985;21(5); 2059–2061. DOI: http://doi.org.10.1109/tmag.1985.10640195 \nКотова Д. Артамонова М. Крысанова Т. А., Василенко М. С., Новикова Л. А., Бельчинская Л. И., Петухова Г. А. Влияние воздействия импульсного магнитного поля на гидратационные свойства клиноптилолита и глауконита. Физикохимия поверхности и защита материалов. 2018; 54 (4): 327–331. DOI: http://doi.org./10.7868/s0044185618040010 \nВернадский В. Курбатов С. Земные силикаты, алюмосиликаты и их аналоги. 4изд. М.: 1937.378с.– 1937. 378 с. \nCPD S - International Center for Diffraction Data. PDF Card 2012 00-039-1383 \nCPD S - International Center for Diffraction Data. PDF Card 2012 00-013-0135 \nCPD S - International Center for Diffraction Data. PDF Card 2012 00-029-0855 \nЗимкина Т. Фомичев В. Ультрамягкая рентгеновская спектроскопия. Ленинград: изд-во ЛГУ; 1971. 132 с. \nШулаков А. Степанов А. Глубина генерации ультрамягкого рентгеновского излучения в SiO2. Поверхность. Физ. Хим. Мех. 1988.;10.: 150. \nТерехов В. Тростянский С. Селезнев А. Е., Домашевская Э. П. Изменение плотностилокализованных состояний в поверхностных слоях аморфного гидрогенезированного кремния при вакуумтермических отжигах. Поверхность Физ.. Хим. Мех. 1988;5: 74–80. \nDomashevskaya E. P., Peshkov Y. A , Terekhov V. A., Yurakov Y. A., Barkov K. A. Phase composition of the buried silicon interlayers in the amorphous multilayer nanostructures [(Co45Fe45Zr10)/a-Si:H]41 and [(Co45Fe45Zr10)35(Al2O3)65/a-Si:H]41. Surf. Interface Anal . 2018;50(12-13): 1265–1270. DOI: https://doi.org/10.1002/sia.6515 \nМануковский Э. Ю. Электронная структура, состав и фотолюминесценция пористого кремния. Автореф. дис. … канд. физ. -мат. наук. Воронеж: ВГУ; 2000. 16 с. \nДомашевская Э. Терехов В. Турищев С. Ю ., Прижимов А. С., Харин А. Н., Паринова Е. В., Румянцева Н. А., Усольцева Д. С., Фоменко Ю . Л., Беленко С. В. Атомное и электронное строение аморфных и нанокристаллических слоев полуизолирующего кремния, полученных методом химического осаждения при низком давлении. Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2015;12 c 24-33 \n","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Влияние слабого импульсного электромагнитного поля на атомное строение природных алюмосиликатов клиноптилолита, монтмориллонита и палыгорскита\",\"authors\":\"Larisa I. Belchinskaya, Konstantin V. Zhuzhukin, Konstantin A. Barkov, Sergey A. Ivkov, Vladimir A. Terekhov, E. P. Domashevskaya\",\"doi\":\"10.17308/kcmf.2020.22/2525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Естественные и искусственные алюмосиликаты являются актуальными объектами исследования благодаря широкому использованию в медицине, пищевой и химической промышленностях, в сельском хозяйстве. Целью работы является исследование возможных изменений под воздействием слабого импульсного электромагнитного поля атомного строения порошкообразных образцов трех минералов: клиноптилолита NaKNa2Ca2(SiSi29Al7)О72·24H2O монтмориллонита, монтмориллонита Ca0.2( AlMg)2Si4O10(OH))2·4H2O и палыгорскита AlSiMgAlSi4O10(OH)4·H2O относящихся к группе природных алюмосиликатов,, относящихся к группе природных алюмосиликатов, в которых кремний-кислородные и алюминий-кислородные тетраэдры связаны между собой общим атомом кислорода.Результаты исследований методами рентгеновской дифракции и ультрамягкой рентгеновской эмиссионной спектроскопии показали, что через 48 часов после воздействия слабого импульсного электромагнитного поля 71 мТл в течение 30 секунд атомная и электронная подсистемы образцов минералов все еще сохраняли изменения. Влияние слабого импульсного электромагнитного поля на атомную структуру минералов проявилось по-разному в трех образцах в виде одной-двух дополнительных слабых свехструктурных линий на дифрактограммах. Влияние слабого импульсного электромагнитного поля на локальное окружение кремния атомами кислорода в кремний-кислородных тетраэдрах проявилось в виде изменений тонкой структуры спектров ультрамягкой рентгеновской эмиссионной спектроскопии кремния SiLSiL2,3, указывающих на восстановление стехиометрии субоксидов кремния SiO1.8 в составе алюмосиликатов исходных порошков в стехиометрию, равную или близкую диоксиду кремния SiO2, во всех трех минералах. \\n \\n \\n \\n \\nЛИТЕРАТУРА \\n \\nГак Е. Рик Т. О влиянии постоянного магнитного поля на кинетику движения ионов в водных растворах сильных электролитов. Доклады АН СССР. 1967;175(4): 856–858. \\nМартынова О. Гусев Б. Леонтьев Е. К вопросу о механизме влияния магнитного поля на водные растворы солей. Успехи физических наук. 1969;98: 25–31. \\nЧеснокова Л. Вопросы теории и практики магнитной обработки воды и водных систем. М.:.: Цветметинформация с.; 1971. 75 с. \\nKronenberg K. Experimental evidence for the effects of magnetic fields on moving water. IEEE Transactions on Magnetics. 1985;21(5); 2059–2061. DOI: http://doi.org.10.1109/tmag.1985.10640195 \\nКотова Д. Артамонова М. Крысанова Т. А., Василенко М. С., Новикова Л. А., Бельчинская Л. И., Петухова Г. А. Влияние воздействия импульсного магнитного поля на гидратационные свойства клиноптилолита и глауконита. Физикохимия поверхности и защита материалов. 2018; 54 (4): 327–331. DOI: http://doi.org./10.7868/s0044185618040010 \\nВернадский В. Курбатов С. Земные силикаты, алюмосиликаты и их аналоги. 4изд. М.: 1937.378с.– 1937. 378 с. \\nCPD S - International Center for Diffraction Data. PDF Card 2012 00-039-1383 \\nCPD S - International Center for Diffraction Data. PDF Card 2012 00-013-0135 \\nCPD S - International Center for Diffraction Data. PDF Card 2012 00-029-0855 \\nЗимкина Т. Фомичев В. Ультрамягкая рентгеновская спектроскопия. Ленинград: изд-во ЛГУ; 1971. 132 с. \\nШулаков А. Степанов А. Глубина генерации ультрамягкого рентгеновского излучения в SiO2. Поверхность. Физ. Хим. Мех. 1988.;10.: 150. \\nТерехов В. Тростянский С. Селезнев А. Е., Домашевская Э. П. Изменение плотностилокализованных состояний в поверхностных слоях аморфного гидрогенезированного кремния при вакуумтермических отжигах. Поверхность Физ.. Хим. Мех. 1988;5: 74–80. \\nDomashevskaya E. P., Peshkov Y. A , Terekhov V. A., Yurakov Y. A., Barkov K. A. Phase composition of the buried silicon interlayers in the amorphous multilayer nanostructures [(Co45Fe45Zr10)/a-Si:H]41 and [(Co45Fe45Zr10)35(Al2O3)65/a-Si:H]41. Surf. Interface Anal . 2018;50(12-13): 1265–1270. DOI: https://doi.org/10.1002/sia.6515 \\nМануковский Э. Ю. Электронная структура, состав и фотолюминесценция пористого кремния. Автореф. дис. … канд. физ. -мат. наук. Воронеж: ВГУ; 2000. 16 с. \\nДомашевская Э. Терехов В. Турищев С. Ю ., Прижимов А. С., Харин А. Н., Паринова Е. В., Румянцева Н. А., Усольцева Д. С., Фоменко Ю . Л., Беленко С. В. Атомное и электронное строение аморфных и нанокристаллических слоев полуизолирующего кремния, полученных методом химического осаждения при низком давлении. Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2015;12 c 24-33 \\n\",\"PeriodicalId\":17879,\"journal\":{\"name\":\"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17308/kcmf.2020.22/2525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17308/kcmf.2020.22/2525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Влияние слабого импульсного электромагнитного поля на атомное строение природных алюмосиликатов клиноптилолита, монтмориллонита и палыгорскита
Естественные и искусственные алюмосиликаты являются актуальными объектами исследования благодаря широкому использованию в медицине, пищевой и химической промышленностях, в сельском хозяйстве. Целью работы является исследование возможных изменений под воздействием слабого импульсного электромагнитного поля атомного строения порошкообразных образцов трех минералов: клиноптилолита NaKNa2Ca2(SiSi29Al7)О72·24H2O монтмориллонита, монтмориллонита Ca0.2( AlMg)2Si4O10(OH))2·4H2O и палыгорскита AlSiMgAlSi4O10(OH)4·H2O относящихся к группе природных алюмосиликатов,, относящихся к группе природных алюмосиликатов, в которых кремний-кислородные и алюминий-кислородные тетраэдры связаны между собой общим атомом кислорода.Результаты исследований методами рентгеновской дифракции и ультрамягкой рентгеновской эмиссионной спектроскопии показали, что через 48 часов после воздействия слабого импульсного электромагнитного поля 71 мТл в течение 30 секунд атомная и электронная подсистемы образцов минералов все еще сохраняли изменения. Влияние слабого импульсного электромагнитного поля на атомную структуру минералов проявилось по-разному в трех образцах в виде одной-двух дополнительных слабых свехструктурных линий на дифрактограммах. Влияние слабого импульсного электромагнитного поля на локальное окружение кремния атомами кислорода в кремний-кислородных тетраэдрах проявилось в виде изменений тонкой структуры спектров ультрамягкой рентгеновской эмиссионной спектроскопии кремния SiLSiL2,3, указывающих на восстановление стехиометрии субоксидов кремния SiO1.8 в составе алюмосиликатов исходных порошков в стехиометрию, равную или близкую диоксиду кремния SiO2, во всех трех минералах.
ЛИТЕРАТУРА
Гак Е. Рик Т. О влиянии постоянного магнитного поля на кинетику движения ионов в водных растворах сильных электролитов. Доклады АН СССР. 1967;175(4): 856–858.
Мартынова О. Гусев Б. Леонтьев Е. К вопросу о механизме влияния магнитного поля на водные растворы солей. Успехи физических наук. 1969;98: 25–31.
Чеснокова Л. Вопросы теории и практики магнитной обработки воды и водных систем. М.:.: Цветметинформация с.; 1971. 75 с.
Kronenberg K. Experimental evidence for the effects of magnetic fields on moving water. IEEE Transactions on Magnetics. 1985;21(5); 2059–2061. DOI: http://doi.org.10.1109/tmag.1985.10640195
Котова Д. Артамонова М. Крысанова Т. А., Василенко М. С., Новикова Л. А., Бельчинская Л. И., Петухова Г. А. Влияние воздействия импульсного магнитного поля на гидратационные свойства клиноптилолита и глауконита. Физикохимия поверхности и защита материалов. 2018; 54 (4): 327–331. DOI: http://doi.org./10.7868/s0044185618040010
Вернадский В. Курбатов С. Земные силикаты, алюмосиликаты и их аналоги. 4изд. М.: 1937.378с.– 1937. 378 с.
CPD S - International Center for Diffraction Data. PDF Card 2012 00-039-1383
CPD S - International Center for Diffraction Data. PDF Card 2012 00-013-0135
CPD S - International Center for Diffraction Data. PDF Card 2012 00-029-0855
Зимкина Т. Фомичев В. Ультрамягкая рентгеновская спектроскопия. Ленинград: изд-во ЛГУ; 1971. 132 с.
Шулаков А. Степанов А. Глубина генерации ультрамягкого рентгеновского излучения в SiO2. Поверхность. Физ. Хим. Мех. 1988.;10.: 150.
Терехов В. Тростянский С. Селезнев А. Е., Домашевская Э. П. Изменение плотностилокализованных состояний в поверхностных слоях аморфного гидрогенезированного кремния при вакуумтермических отжигах. Поверхность Физ.. Хим. Мех. 1988;5: 74–80.
Domashevskaya E. P., Peshkov Y. A , Terekhov V. A., Yurakov Y. A., Barkov K. A. Phase composition of the buried silicon interlayers in the amorphous multilayer nanostructures [(Co45Fe45Zr10)/a-Si:H]41 and [(Co45Fe45Zr10)35(Al2O3)65/a-Si:H]41. Surf. Interface Anal . 2018;50(12-13): 1265–1270. DOI: https://doi.org/10.1002/sia.6515
Мануковский Э. Ю. Электронная структура, состав и фотолюминесценция пористого кремния. Автореф. дис. … канд. физ. -мат. наук. Воронеж: ВГУ; 2000. 16 с.
Домашевская Э. Терехов В. Турищев С. Ю ., Прижимов А. С., Харин А. Н., Паринова Е. В., Румянцева Н. А., Усольцева Д. С., Фоменко Ю . Л., Беленко С. В. Атомное и электронное строение аморфных и нанокристаллических слоев полуизолирующего кремния, полученных методом химического осаждения при низком давлении. Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2015;12 c 24-33