可见光定位:一种机器学习方法

Vasileios P. Rekkas, S. Sotiroudis, D. Plets, W. Joseph, S. Goudos
{"title":"可见光定位:一种机器学习方法","authors":"Vasileios P. Rekkas, S. Sotiroudis, D. Plets, W. Joseph, S. Goudos","doi":"10.1109/SEEDA-CECNSM57760.2022.9932981","DOIUrl":null,"url":null,"abstract":"Visible light positioning (VLP) systems have experienced substantial revolutionary progress over the past year because they can offer great positioning accuracy without needing any additional infrastructure, as conventional radio-frequency (RF)-based systems. Received signal strength (RSS)-based VLP systems are a promising approach to many indoor positioning estimation problems, but still suffer from difficulty in providing high accuracy and reliability. A potential solution to these challenges is to combine VLP systems, and machine learning (ML) approaches to enhance the position prediction accuracy in two-dimensional (2-D) spaces, or more complex problems. In this paper, we propose a ML approach to accurately predict the 2-D indoor position of a mobile receiver (eg. an automated guided vehicles-AGV), based on the measured RSS values of 4 photodiodes (PDs) forming a star architecture. We examine and evaluate the performance of different ML learners applied to the above-described problem. The proposed ML and Neural Network (NN) methods exhibit great accuracy results in predicting the 2-D coordinates of a PD-based receiver.","PeriodicalId":68279,"journal":{"name":"计算机工程与设计","volume":"15 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Visible Light Positioning: A Machine Learning Approach\",\"authors\":\"Vasileios P. Rekkas, S. Sotiroudis, D. Plets, W. Joseph, S. Goudos\",\"doi\":\"10.1109/SEEDA-CECNSM57760.2022.9932981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visible light positioning (VLP) systems have experienced substantial revolutionary progress over the past year because they can offer great positioning accuracy without needing any additional infrastructure, as conventional radio-frequency (RF)-based systems. Received signal strength (RSS)-based VLP systems are a promising approach to many indoor positioning estimation problems, but still suffer from difficulty in providing high accuracy and reliability. A potential solution to these challenges is to combine VLP systems, and machine learning (ML) approaches to enhance the position prediction accuracy in two-dimensional (2-D) spaces, or more complex problems. In this paper, we propose a ML approach to accurately predict the 2-D indoor position of a mobile receiver (eg. an automated guided vehicles-AGV), based on the measured RSS values of 4 photodiodes (PDs) forming a star architecture. We examine and evaluate the performance of different ML learners applied to the above-described problem. The proposed ML and Neural Network (NN) methods exhibit great accuracy results in predicting the 2-D coordinates of a PD-based receiver.\",\"PeriodicalId\":68279,\"journal\":{\"name\":\"计算机工程与设计\",\"volume\":\"15 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"计算机工程与设计\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/SEEDA-CECNSM57760.2022.9932981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机工程与设计","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/SEEDA-CECNSM57760.2022.9932981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

可见光定位(VLP)系统在过去一年中经历了重大的革命性进步,因为它们可以提供很高的定位精度,而不需要任何额外的基础设施,就像传统的射频(RF)系统一样。基于接收信号强度(RSS)的VLP系统是解决许多室内定位问题的一种很有前途的方法,但在提供高精度和可靠性方面仍然存在困难。应对这些挑战的一个潜在解决方案是将VLP系统和机器学习(ML)方法结合起来,以提高二维(2-D)空间或更复杂问题中的位置预测精度。在本文中,我们提出了一种机器学习方法来准确预测移动接收器的二维室内位置(例如。一种自动制导车辆(agv),基于形成星形结构的4个光电二极管(pd)的测量RSS值。我们检查和评估应用于上述问题的不同ML学习器的性能。所提出的机器学习和神经网络(NN)方法在预测基于pd的接收器的二维坐标方面表现出很高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visible Light Positioning: A Machine Learning Approach
Visible light positioning (VLP) systems have experienced substantial revolutionary progress over the past year because they can offer great positioning accuracy without needing any additional infrastructure, as conventional radio-frequency (RF)-based systems. Received signal strength (RSS)-based VLP systems are a promising approach to many indoor positioning estimation problems, but still suffer from difficulty in providing high accuracy and reliability. A potential solution to these challenges is to combine VLP systems, and machine learning (ML) approaches to enhance the position prediction accuracy in two-dimensional (2-D) spaces, or more complex problems. In this paper, we propose a ML approach to accurately predict the 2-D indoor position of a mobile receiver (eg. an automated guided vehicles-AGV), based on the measured RSS values of 4 photodiodes (PDs) forming a star architecture. We examine and evaluate the performance of different ML learners applied to the above-described problem. The proposed ML and Neural Network (NN) methods exhibit great accuracy results in predicting the 2-D coordinates of a PD-based receiver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20353
期刊介绍: Computer Engineering and Design is supervised by China Aerospace Science and Industry Corporation and sponsored by the 706th Institute of the Second Academy of China Aerospace Science and Industry Corporation. It was founded in 1980. The purpose of the journal is to disseminate new technologies and promote academic exchanges. Since its inception, it has adhered to the principle of combining depth and breadth, theory and application, and focused on reporting cutting-edge and hot computer technologies. The journal accepts academic papers with innovative and independent academic insights, including papers on fund projects, award-winning research papers, outstanding papers at academic conferences, doctoral and master's theses, etc.
期刊最新文献
Open weather data evaluation for crop irrigation prediction mechanisms in the AUGEIAS project A bi-directional shortest path calculation speed up technique for RDBMS Scavenging PyPi for VLSI Packages Environmental Awareness in Preschool Education via Educational Robotics and STEAM Education A TinyML-based Alcohol Impairment Detection System For Vehicle Accident Prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1