海港拖船调度

Shuai Jia, Shuqin Li, Xudong Lin, Xiaohong Chen
{"title":"海港拖船调度","authors":"Shuai Jia, Shuqin Li, Xudong Lin, Xiaohong Chen","doi":"10.1287/trsc.2021.1079","DOIUrl":null,"url":null,"abstract":"In a seaport, vessels need the assistance of tugboats when mooring and unmooring. Tugboats assist a vessel by pushing or towing the vessel’s tug points, and the vessel can moor (or unmoor) successfully only if each of the tug points is operated with sufficient horsepower. For a busy port where vessels frequently require the service of tugboats, effectively scheduling tugboats for serving incoming and outgoing vessels is a key to successful execution of the vessels’ berth plans. In this paper, we study a tugboat scheduling problem in a busy port, where incoming and outgoing vessels frequently require the assistance of tugboats, but the number of available tugboats is limited. We make use of a network representation of the problem and develop an integer programming formulation, which takes into account the berth plans of vessels, the tug points of vessels for different move types, and the horsepower requirements of the tug points, to minimize the weighted sum of the berthing and departure tardiness of vessels, the operating cost of tugboats, and the number of vessels that cannot be served successfully. We analyze the computational complexity of the problem and develop a novel iterative solution method, which combines Lagrangian relaxation and Benders decomposition, for generating near-optimal solutions. Computational performance of the proposed solution method is evaluated on problem instances generated from the operational data of a container port in Shanghai.","PeriodicalId":23247,"journal":{"name":"Transp. Sci.","volume":"18 1","pages":"1370-1391"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Scheduling Tugboats in a Seaport\",\"authors\":\"Shuai Jia, Shuqin Li, Xudong Lin, Xiaohong Chen\",\"doi\":\"10.1287/trsc.2021.1079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a seaport, vessels need the assistance of tugboats when mooring and unmooring. Tugboats assist a vessel by pushing or towing the vessel’s tug points, and the vessel can moor (or unmoor) successfully only if each of the tug points is operated with sufficient horsepower. For a busy port where vessels frequently require the service of tugboats, effectively scheduling tugboats for serving incoming and outgoing vessels is a key to successful execution of the vessels’ berth plans. In this paper, we study a tugboat scheduling problem in a busy port, where incoming and outgoing vessels frequently require the assistance of tugboats, but the number of available tugboats is limited. We make use of a network representation of the problem and develop an integer programming formulation, which takes into account the berth plans of vessels, the tug points of vessels for different move types, and the horsepower requirements of the tug points, to minimize the weighted sum of the berthing and departure tardiness of vessels, the operating cost of tugboats, and the number of vessels that cannot be served successfully. We analyze the computational complexity of the problem and develop a novel iterative solution method, which combines Lagrangian relaxation and Benders decomposition, for generating near-optimal solutions. Computational performance of the proposed solution method is evaluated on problem instances generated from the operational data of a container port in Shanghai.\",\"PeriodicalId\":23247,\"journal\":{\"name\":\"Transp. Sci.\",\"volume\":\"18 1\",\"pages\":\"1370-1391\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transp. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2021.1079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transp. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.2021.1079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在海港,船舶在系泊和解系泊时需要拖船的协助。拖船通过推动或拖曳船只的拖轮点来帮助船只,只有当每个拖轮点都有足够的马力时,船只才能成功地停泊(或离开)。对于一个繁忙的港口,船舶经常需要拖船服务,有效地安排拖船为进出船舶服务是船舶泊位计划成功执行的关键。本文研究了繁忙港口中拖船调度问题,该问题中进出港口的船舶经常需要拖船的辅助,但可用的拖船数量有限。利用该问题的网络表示,提出了一个考虑船舶泊位规划、不同移动类型船舶的拖轮点和拖轮点马力要求的整数规划公式,以使船舶靠泊和离港延误的加权和、拖船的运营成本和不能成功服务的船舶数量最小。我们分析了该问题的计算复杂性,并提出了一种新的迭代求解方法,该方法将拉格朗日松弛和Benders分解相结合,用于生成近最优解。以上海某集装箱港口运营数据为例,对所提求解方法的计算性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scheduling Tugboats in a Seaport
In a seaport, vessels need the assistance of tugboats when mooring and unmooring. Tugboats assist a vessel by pushing or towing the vessel’s tug points, and the vessel can moor (or unmoor) successfully only if each of the tug points is operated with sufficient horsepower. For a busy port where vessels frequently require the service of tugboats, effectively scheduling tugboats for serving incoming and outgoing vessels is a key to successful execution of the vessels’ berth plans. In this paper, we study a tugboat scheduling problem in a busy port, where incoming and outgoing vessels frequently require the assistance of tugboats, but the number of available tugboats is limited. We make use of a network representation of the problem and develop an integer programming formulation, which takes into account the berth plans of vessels, the tug points of vessels for different move types, and the horsepower requirements of the tug points, to minimize the weighted sum of the berthing and departure tardiness of vessels, the operating cost of tugboats, and the number of vessels that cannot be served successfully. We analyze the computational complexity of the problem and develop a novel iterative solution method, which combines Lagrangian relaxation and Benders decomposition, for generating near-optimal solutions. Computational performance of the proposed solution method is evaluated on problem instances generated from the operational data of a container port in Shanghai.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Air Quality on Housing Location: A Predictive Dynamic Continuum User-Optimal Approach Transportation in the Sharing Economy Scheduling Vehicles with Spatial Conflicts Differentiated Pricing of Shared Mobility Systems Considering Network Effects Using COVID-19 Data on Vaccine Shipments and Wastage to Inform Modeling and Decision-Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1