{"title":"2015年3月20日和2022年10月25日日食期间莫斯科地区中间层臭氧变化的地基微波测量","authors":"S. Rozanov, A. Ignatyev, A. Zavgorodniy","doi":"10.3390/rs15133440","DOIUrl":null,"url":null,"abstract":"An increase in the ozone content in the mesosphere over the Moscow region during the solar eclipses of 20 March 2015 and 25 October 2022 was observed by means of a ground-based microwave radiometer operated at frequencies of the ozone spectral line of 142.175 GHz. Changes in ozone mixing ratio (OMR) at altitudes of 90 km and 65 km were estimated and compared with diurnal ozone variations measured on the dates closest to the events. It was found that the observed increase in the OMR at 90 km during the 20 March 2015 eclipse was almost two times greater than during the 25 October 2022 eclipse, although the maximum Sun’s obscurations of these eclipses were close to each other (0.625 and 0.646). Most likely, this difference can be explained by the difference in concentration of atomic hydrogen, which plays an important role in ozone destruction at altitudes of around 90 km and above.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground-Based Microwave Measurements of Mesospheric Ozone Variations over Moscow Region during the Solar Eclipses of 20 March 2015 and 25 October 2022\",\"authors\":\"S. Rozanov, A. Ignatyev, A. Zavgorodniy\",\"doi\":\"10.3390/rs15133440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An increase in the ozone content in the mesosphere over the Moscow region during the solar eclipses of 20 March 2015 and 25 October 2022 was observed by means of a ground-based microwave radiometer operated at frequencies of the ozone spectral line of 142.175 GHz. Changes in ozone mixing ratio (OMR) at altitudes of 90 km and 65 km were estimated and compared with diurnal ozone variations measured on the dates closest to the events. It was found that the observed increase in the OMR at 90 km during the 20 March 2015 eclipse was almost two times greater than during the 25 October 2022 eclipse, although the maximum Sun’s obscurations of these eclipses were close to each other (0.625 and 0.646). Most likely, this difference can be explained by the difference in concentration of atomic hydrogen, which plays an important role in ozone destruction at altitudes of around 90 km and above.\",\"PeriodicalId\":20944,\"journal\":{\"name\":\"Remote. Sens.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote. Sens.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/rs15133440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs15133440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ground-Based Microwave Measurements of Mesospheric Ozone Variations over Moscow Region during the Solar Eclipses of 20 March 2015 and 25 October 2022
An increase in the ozone content in the mesosphere over the Moscow region during the solar eclipses of 20 March 2015 and 25 October 2022 was observed by means of a ground-based microwave radiometer operated at frequencies of the ozone spectral line of 142.175 GHz. Changes in ozone mixing ratio (OMR) at altitudes of 90 km and 65 km were estimated and compared with diurnal ozone variations measured on the dates closest to the events. It was found that the observed increase in the OMR at 90 km during the 20 March 2015 eclipse was almost two times greater than during the 25 October 2022 eclipse, although the maximum Sun’s obscurations of these eclipses were close to each other (0.625 and 0.646). Most likely, this difference can be explained by the difference in concentration of atomic hydrogen, which plays an important role in ozone destruction at altitudes of around 90 km and above.