基于矢量量化的图像压缩和基于遗传交配影响黏菌算法的优化码本设计

IF 0.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Web Intelligence Pub Date : 2023-05-25 DOI:10.3233/web-220050
Pratibha Chavan, B. Rani, M. Murugan, P. Chavan
{"title":"基于矢量量化的图像压缩和基于遗传交配影响黏菌算法的优化码本设计","authors":"Pratibha Chavan, B. Rani, M. Murugan, P. Chavan","doi":"10.3233/web-220050","DOIUrl":null,"url":null,"abstract":"Large amounts of storage are required to store the recent massive influx of fresh photographs that are uploaded to the internet. Many analysts created expert image compression techniques during the preceding decades to increase compression rates and visual quality. In this research work, a unique image compression technique is established for Vector Quantization (VQ) with the K-means Linde–Buzo–Gary (KLBG) model. As a contribution, the codebooks are optimized with the aid of hybrid optimization algorithm. The projected KLBG model included three major phases: an encoder for image compression, a channel for transitions of the compressed image, and a decoder for image reconstruction. In the encoder section, the image vector creation, optimal codebook generation, and indexing mechanism are carried out. The input image enters the encoder stage, wherein it’s split into immediate and non-overlapping blocks. The proposed GMISM model hybridizes the concepts of the Genetic Algorithm (GA) and Slime Mould Optimization (SMO), respectively. Once, the optimal codebook is generated successfully, the indexing of the every vector with index number from index table takes place. These index numbers are sent through the channel to the receiver. The index table, optimal codebook and reconstructed picture are all included in the decoder portion. The received index table decodes the received indexed numbers. The optimally produced codebook at the receiver is identical to the codebook at the transmitter. The matching code words are allocated to the received index numbers, and the code words are organized so that the reconstructed picture is the same size as the input image. Eventually, a comparative assessment is performed to evaluate the proposed model. Especially, the computation time of the proposed model is 69.11%, 27.64%, 62.07%, 87.67%, 35.73%, 62.35%, and 14.11% better than the extant CSA, BFU-ROA, PSO, ROA, LA, SMO, and GA algorithms, respectively.","PeriodicalId":42775,"journal":{"name":"Web Intelligence","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image compression based on vector quantization and optimized code-book design using Genetic Mating Influenced Slime Mould (GMISM) algorithm\",\"authors\":\"Pratibha Chavan, B. Rani, M. Murugan, P. Chavan\",\"doi\":\"10.3233/web-220050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large amounts of storage are required to store the recent massive influx of fresh photographs that are uploaded to the internet. Many analysts created expert image compression techniques during the preceding decades to increase compression rates and visual quality. In this research work, a unique image compression technique is established for Vector Quantization (VQ) with the K-means Linde–Buzo–Gary (KLBG) model. As a contribution, the codebooks are optimized with the aid of hybrid optimization algorithm. The projected KLBG model included three major phases: an encoder for image compression, a channel for transitions of the compressed image, and a decoder for image reconstruction. In the encoder section, the image vector creation, optimal codebook generation, and indexing mechanism are carried out. The input image enters the encoder stage, wherein it’s split into immediate and non-overlapping blocks. The proposed GMISM model hybridizes the concepts of the Genetic Algorithm (GA) and Slime Mould Optimization (SMO), respectively. Once, the optimal codebook is generated successfully, the indexing of the every vector with index number from index table takes place. These index numbers are sent through the channel to the receiver. The index table, optimal codebook and reconstructed picture are all included in the decoder portion. The received index table decodes the received indexed numbers. The optimally produced codebook at the receiver is identical to the codebook at the transmitter. The matching code words are allocated to the received index numbers, and the code words are organized so that the reconstructed picture is the same size as the input image. Eventually, a comparative assessment is performed to evaluate the proposed model. Especially, the computation time of the proposed model is 69.11%, 27.64%, 62.07%, 87.67%, 35.73%, 62.35%, and 14.11% better than the extant CSA, BFU-ROA, PSO, ROA, LA, SMO, and GA algorithms, respectively.\",\"PeriodicalId\":42775,\"journal\":{\"name\":\"Web Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/web-220050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-220050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

为了存储最近大量上传至互联网的新鲜照片,需要大量的存储空间。在过去的几十年里,许多分析人员创造了专业的图像压缩技术,以提高压缩率和视觉质量。本研究利用K-means Linde-Buzo-Gary (KLBG)模型,建立了一种独特的矢量量化(VQ)图像压缩技术。作为一种贡献,利用混合优化算法对码本进行了优化。投影的KLBG模型包括三个主要阶段:用于图像压缩的编码器,用于压缩图像转换的通道,以及用于图像重建的解码器。在编码器部分,进行了图像矢量的创建、最优码本的生成和索引机制。输入图像进入编码器阶段,其中它被分割成直接和不重叠的块。提出的GMISM模型将遗传算法(GA)和黏菌优化(SMO)的概念相结合。一旦成功生成了最优码本,就对索引表中具有索引号的每个向量进行索引。这些索引号通过通道发送给接收方。解码器部分包括索引表、最优码本和重构图像。接收到的索引表对接收到的索引号进行解码。在接收端产生的最佳码本与在发送端产生的码本是相同的。将匹配的码字分配给接收到的索引号,并对码字进行组织,使重构图像与输入图像大小相同。最后,对所提出的模型进行了比较评估。与现有的CSA、BFU-ROA、PSO、ROA、LA、SMO和GA算法相比,该模型的计算时间分别提高了69.11%、27.64%、62.07%、87.67%、35.73%、62.35%和14.11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image compression based on vector quantization and optimized code-book design using Genetic Mating Influenced Slime Mould (GMISM) algorithm
Large amounts of storage are required to store the recent massive influx of fresh photographs that are uploaded to the internet. Many analysts created expert image compression techniques during the preceding decades to increase compression rates and visual quality. In this research work, a unique image compression technique is established for Vector Quantization (VQ) with the K-means Linde–Buzo–Gary (KLBG) model. As a contribution, the codebooks are optimized with the aid of hybrid optimization algorithm. The projected KLBG model included three major phases: an encoder for image compression, a channel for transitions of the compressed image, and a decoder for image reconstruction. In the encoder section, the image vector creation, optimal codebook generation, and indexing mechanism are carried out. The input image enters the encoder stage, wherein it’s split into immediate and non-overlapping blocks. The proposed GMISM model hybridizes the concepts of the Genetic Algorithm (GA) and Slime Mould Optimization (SMO), respectively. Once, the optimal codebook is generated successfully, the indexing of the every vector with index number from index table takes place. These index numbers are sent through the channel to the receiver. The index table, optimal codebook and reconstructed picture are all included in the decoder portion. The received index table decodes the received indexed numbers. The optimally produced codebook at the receiver is identical to the codebook at the transmitter. The matching code words are allocated to the received index numbers, and the code words are organized so that the reconstructed picture is the same size as the input image. Eventually, a comparative assessment is performed to evaluate the proposed model. Especially, the computation time of the proposed model is 69.11%, 27.64%, 62.07%, 87.67%, 35.73%, 62.35%, and 14.11% better than the extant CSA, BFU-ROA, PSO, ROA, LA, SMO, and GA algorithms, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Web Intelligence
Web Intelligence COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
0.90
自引率
0.00%
发文量
35
期刊介绍: Web Intelligence (WI) is an official journal of the Web Intelligence Consortium (WIC), an international organization dedicated to promoting collaborative scientific research and industrial development in the era of Web intelligence. WI seeks to collaborate with major societies and international conferences in the field. WI is a peer-reviewed journal, which publishes four issues a year, in both online and print form. WI aims to achieve a multi-disciplinary balance between research advances in theories and methods usually associated with Collective Intelligence, Data Science, Human-Centric Computing, Knowledge Management, and Network Science. It is committed to publishing research that both deepen the understanding of computational, logical, cognitive, physical, and social foundations of the future Web, and enable the development and application of technologies based on Web intelligence. The journal features high-quality, original research papers (including state-of-the-art reviews), brief papers, and letters in all theoretical and technology areas that make up the field of WI. The papers should clearly focus on some of the following areas of interest: a. Collective Intelligence[...] b. Data Science[...] c. Human-Centric Computing[...] d. Knowledge Management[...] e. Network Science[...]
期刊最新文献
Hybrid optimization based deep stacked autoencoder for routing and intrusion detection Fractional hunger jellyfish search optimization based deep quantum neural network for malicious traffic segregation and attack detection Efficient IoT-based heart disease prediction framework with Weight Updated Trans-Bidirectional Long Short Term Memory-Gated Recurrent Unit Development of optimized cascaded LSTM with Seq2seqNet and transformer net for aspect-based sentiment analysis framework Business model innovation and creativity impact on entrepreneurship development: An empirical study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1