LED光源相关色温和S/ p比对离轴视觉和介观照明反应时间的影响

IF 2.6 2区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Leukos Pub Date : 2021-10-05 DOI:10.1080/15502724.2021.1970580
E. Vicente, B. Matesanz, M. Rodríguez-Rosa, A. M. Sáez, S. Mar, I. Arranz
{"title":"LED光源相关色温和S/ p比对离轴视觉和介观照明反应时间的影响","authors":"E. Vicente, B. Matesanz, M. Rodríguez-Rosa, A. M. Sáez, S. Mar, I. Arranz","doi":"10.1080/15502724.2021.1970580","DOIUrl":null,"url":null,"abstract":"ABSTRACT The increasing replacement of traditional lamps by LED technology opens the door to research into visual performance under their multiple possible spectral power distributions. The correlated color temperature and S/P-ratio are considered parameters characterizing the spectrum of a light source. The lack of firm conclusions motivates the analysis in this work of the influence of LED spectrum, which is defined by the correlated color temperature and S/P-ratio, on a representative night-driving task, visual reaction time. A two-channel and four primaries photostimulator was used as set-up for measuring reaction time in off-axis vision, at mesopic illumination conditions and for a range of stimulus contrasts. The experimental conditions included a wide range of correlated color temperatures, ranging from 1870 to 6350 K, and different S/P-ratios for the same temperature. A total of 16 young subjects participated in the experiments. The results show significant shorter reaction times for those conditions in which the spectrum has greater short-wavelength content. This is corroborated by the greater stimulation of rods and S-cones obtained in the calculation of their excitation level. However, the definition of the spectrum using the correlated color temperature and S/P-ratio does not equally define the results obtained. For the same temperature, a higher S/P-ratio provides lower reaction time values, but for the same S/P ratio reaction time is independent of the temperature. LED light sources with high short-wavelength content provide faster response on the basis of a greater excitation of rods and S-cones. The S/P-ratio is the best parameter to justify the effect of spectrum on reaction time, as considers the spectral sensitivity of the visual system in its calculation.","PeriodicalId":49911,"journal":{"name":"Leukos","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effect of Correlated Color Temperature and S/P-ratio of LED Light Sources on Reaction Time in Off-axis Vision and Mesopic Lighting Levels\",\"authors\":\"E. Vicente, B. Matesanz, M. Rodríguez-Rosa, A. M. Sáez, S. Mar, I. Arranz\",\"doi\":\"10.1080/15502724.2021.1970580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The increasing replacement of traditional lamps by LED technology opens the door to research into visual performance under their multiple possible spectral power distributions. The correlated color temperature and S/P-ratio are considered parameters characterizing the spectrum of a light source. The lack of firm conclusions motivates the analysis in this work of the influence of LED spectrum, which is defined by the correlated color temperature and S/P-ratio, on a representative night-driving task, visual reaction time. A two-channel and four primaries photostimulator was used as set-up for measuring reaction time in off-axis vision, at mesopic illumination conditions and for a range of stimulus contrasts. The experimental conditions included a wide range of correlated color temperatures, ranging from 1870 to 6350 K, and different S/P-ratios for the same temperature. A total of 16 young subjects participated in the experiments. The results show significant shorter reaction times for those conditions in which the spectrum has greater short-wavelength content. This is corroborated by the greater stimulation of rods and S-cones obtained in the calculation of their excitation level. However, the definition of the spectrum using the correlated color temperature and S/P-ratio does not equally define the results obtained. For the same temperature, a higher S/P-ratio provides lower reaction time values, but for the same S/P ratio reaction time is independent of the temperature. LED light sources with high short-wavelength content provide faster response on the basis of a greater excitation of rods and S-cones. The S/P-ratio is the best parameter to justify the effect of spectrum on reaction time, as considers the spectral sensitivity of the visual system in its calculation.\",\"PeriodicalId\":49911,\"journal\":{\"name\":\"Leukos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leukos\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15502724.2021.1970580\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukos","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15502724.2021.1970580","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

越来越多的传统灯具被LED技术取代,为研究其多种可能的光谱功率分布下的视觉性能打开了大门。相关色温和S/ p比被认为是表征光源光谱的参数。由于缺乏确凿的结论,本研究分析了LED光谱(由相关色温和S/ p比定义)对具有代表性的夜间驾驶任务视觉反应时间的影响。一个双通道和四基色光刺激器被用来测量在离轴视觉下的反应时间,在中观照明条件下和一系列刺激对比。实验条件包括广泛的相关色温范围,从1870到6350 K,以及相同温度下不同的S/ p比。共有16名年轻受试者参加了实验。结果表明,在波长较短的条件下,反应时间明显缩短。在计算杆状细胞和s锥细胞的兴奋水平时得到的更大的刺激证实了这一点。然而,使用相关色温和S/ p比的光谱定义并不能平等地定义所获得的结果。在相同温度下,S/P比越高,反应时间越短,但S/P比相同时,反应时间与温度无关。具有高短波长含量的LED光源在杆状体和s锥的更大激发的基础上提供更快的响应。S/ p比是证明光谱对反应时间影响的最佳参数,因为它在计算中考虑了视觉系统的光谱灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Correlated Color Temperature and S/P-ratio of LED Light Sources on Reaction Time in Off-axis Vision and Mesopic Lighting Levels
ABSTRACT The increasing replacement of traditional lamps by LED technology opens the door to research into visual performance under their multiple possible spectral power distributions. The correlated color temperature and S/P-ratio are considered parameters characterizing the spectrum of a light source. The lack of firm conclusions motivates the analysis in this work of the influence of LED spectrum, which is defined by the correlated color temperature and S/P-ratio, on a representative night-driving task, visual reaction time. A two-channel and four primaries photostimulator was used as set-up for measuring reaction time in off-axis vision, at mesopic illumination conditions and for a range of stimulus contrasts. The experimental conditions included a wide range of correlated color temperatures, ranging from 1870 to 6350 K, and different S/P-ratios for the same temperature. A total of 16 young subjects participated in the experiments. The results show significant shorter reaction times for those conditions in which the spectrum has greater short-wavelength content. This is corroborated by the greater stimulation of rods and S-cones obtained in the calculation of their excitation level. However, the definition of the spectrum using the correlated color temperature and S/P-ratio does not equally define the results obtained. For the same temperature, a higher S/P-ratio provides lower reaction time values, but for the same S/P ratio reaction time is independent of the temperature. LED light sources with high short-wavelength content provide faster response on the basis of a greater excitation of rods and S-cones. The S/P-ratio is the best parameter to justify the effect of spectrum on reaction time, as considers the spectral sensitivity of the visual system in its calculation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Leukos
Leukos 工程技术-光学
CiteScore
7.60
自引率
5.60%
发文量
19
审稿时长
>12 weeks
期刊介绍: The Illuminating Engineering Society of North America and our publisher Taylor & Francis make every effort to ensure the accuracy of all the information (the "Content") contained in our publications. However, The Illuminating Engineering Society of North America and our publisher Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by The Illuminating Engineering Society of North America and our publisher Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. The Illuminating Engineering Society of North America and our publisher Taylor & Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to, or arising out of the use of the Content. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions .
期刊最新文献
Analyzing the Effects of Monochromatic Lights on the Fungal Growth to Control the Progression of Microbial Deterioration on Animal Collections Preserved in the Zoological Museum of Naples, Italy Light and Motion: Effects of Light Conditions and mEDI on Activity and Motion Area under a Sky-Lighting Machine Modeling Bamboo Window Blinds in Classrooms: Assessing Daylighting Performance by Simulation Incorporating BSDF Optimizing Light Source Spectra for Art Conservation: Exploring Basic Color Groups Including Dynamic Viewing Behavior in Determining Vertical Eye-Level Light: Does it Matter for Office Design?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1