木霉孢子和马氏克卢维酵母细胞磁分离:壳聚糖包覆磁性纳米颗粒的固定化

Sócrates Palácios-Ponce, Rodolfo Ramos‐González, H. Ruiz, M. Aguilar, J. Martínez-Hernández, E. P. Segura-Ceniceros, C. N. Aguilar, G. Michelena, A. Ilyina
{"title":"木霉孢子和马氏克卢维酵母细胞磁分离:壳聚糖包覆磁性纳米颗粒的固定化","authors":"Sócrates Palácios-Ponce, Rodolfo Ramos‐González, H. Ruiz, M. Aguilar, J. Martínez-Hernández, E. P. Segura-Ceniceros, C. N. Aguilar, G. Michelena, A. Ilyina","doi":"10.1080/10826068.2016.1275007","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the present study, the interactions between chitosan-coated magnetic nanoparticles (C-MNP) and Trichoderma sp. spores as well as Kluyveromyces marxianus cells were studied. By Plackett–Burman design, it was demonstrated that factors which directly influenced on yeast cell immobilization and magnetic separation were inoculum and C-MNP quantity, stirring speed, interaction time, and volume of medium, while in the case of fungal spores, the temperature also was disclosed as an influencing factor. Langmuir and Freundlich models were applied for the mathematical analysis of adsorption isotherms at 30°C. For Trichoderma sp. spore adsorption isotherm, the highest correlation coefficient was observed for lineal function of Langmuir model with a maximum adsorption capacity at 5.00E + 09 spores (C-MNP g−1). Adsorption isotherm of K. marxianus cells was better adjusted to Freundlich model with a constant (Kf) estimated as 2.05E + 08 cells (C-MNP g−1). Both systems may have a novel application in fermentation processes assisted with magnetic separation of biomass.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":"1 1","pages":"554 - 561"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Trichoderma sp. spores and Kluyveromyces marxianus cells magnetic separation: Immobilization on chitosan-coated magnetic nanoparticles\",\"authors\":\"Sócrates Palácios-Ponce, Rodolfo Ramos‐González, H. Ruiz, M. Aguilar, J. Martínez-Hernández, E. P. Segura-Ceniceros, C. N. Aguilar, G. Michelena, A. Ilyina\",\"doi\":\"10.1080/10826068.2016.1275007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In the present study, the interactions between chitosan-coated magnetic nanoparticles (C-MNP) and Trichoderma sp. spores as well as Kluyveromyces marxianus cells were studied. By Plackett–Burman design, it was demonstrated that factors which directly influenced on yeast cell immobilization and magnetic separation were inoculum and C-MNP quantity, stirring speed, interaction time, and volume of medium, while in the case of fungal spores, the temperature also was disclosed as an influencing factor. Langmuir and Freundlich models were applied for the mathematical analysis of adsorption isotherms at 30°C. For Trichoderma sp. spore adsorption isotherm, the highest correlation coefficient was observed for lineal function of Langmuir model with a maximum adsorption capacity at 5.00E + 09 spores (C-MNP g−1). Adsorption isotherm of K. marxianus cells was better adjusted to Freundlich model with a constant (Kf) estimated as 2.05E + 08 cells (C-MNP g−1). Both systems may have a novel application in fermentation processes assisted with magnetic separation of biomass.\",\"PeriodicalId\":20393,\"journal\":{\"name\":\"Preparative Biochemistry and Biotechnology\",\"volume\":\"1 1\",\"pages\":\"554 - 561\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2016.1275007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10826068.2016.1275007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

摘要本研究研究了壳聚糖包被磁性纳米颗粒(C-MNP)与木霉孢子和马氏克卢维酵母细胞的相互作用。通过Plackett-Burman设计,发现直接影响酵母细胞固定化和磁分离的因素有接种量、C-MNP用量、搅拌速度、作用时间和培养基体积,而对于真菌孢子,温度也是一个影响因素。采用Langmuir和Freundlich模型对吸附等温线进行了数学分析。对于木霉孢子吸附等温线,Langmuir模型线性函数的相关系数最高,吸附量最大为5.00E + 09孢子(C-MNP g−1)。K. marxianus细胞的吸附等温线较好地调整为Freundlich模型,其常数(Kf)估计为2.05E + 08 cells (C-MNP g−1)。这两种系统都可能在生物质的磁分离辅助发酵过程中有新的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trichoderma sp. spores and Kluyveromyces marxianus cells magnetic separation: Immobilization on chitosan-coated magnetic nanoparticles
ABSTRACT In the present study, the interactions between chitosan-coated magnetic nanoparticles (C-MNP) and Trichoderma sp. spores as well as Kluyveromyces marxianus cells were studied. By Plackett–Burman design, it was demonstrated that factors which directly influenced on yeast cell immobilization and magnetic separation were inoculum and C-MNP quantity, stirring speed, interaction time, and volume of medium, while in the case of fungal spores, the temperature also was disclosed as an influencing factor. Langmuir and Freundlich models were applied for the mathematical analysis of adsorption isotherms at 30°C. For Trichoderma sp. spore adsorption isotherm, the highest correlation coefficient was observed for lineal function of Langmuir model with a maximum adsorption capacity at 5.00E + 09 spores (C-MNP g−1). Adsorption isotherm of K. marxianus cells was better adjusted to Freundlich model with a constant (Kf) estimated as 2.05E + 08 cells (C-MNP g−1). Both systems may have a novel application in fermentation processes assisted with magnetic separation of biomass.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of pretreatment with organic solvent on enzymatic digestibility of cauliflower wastes Selective removal of closely related clipped protein impurities using poly(ethylenimine)- grafted anion-exchange chromatography resin A colorimetric method for the determination of different functional flavonoids using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and peroxidase Optimization of propionic acid production in apple pomace extract with Propionibacterium freudenreichii Optimization of fermented Perilla frutescens seeds for enhancement of gamma-aminobutyric acid and bioactive compounds by Lactobacillus casei TISTR 1500
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1