天然气水合物勘探与表征

D. McConnell
{"title":"天然气水合物勘探与表征","authors":"D. McConnell","doi":"10.4043/29604-MS","DOIUrl":null,"url":null,"abstract":"\n Data acquired from major gas hydrate field programs over the past 20 years has led to much better understanding of the distribution of gas hydrate on the continental margins and how to detect them. Gas hydrate systems are extensions of the conventional hydrocarbon system but are much more closely related to biogenic gas systems. The temperatures at which most biogenic gas is generated is mostly below the base of gas hydrate stability which means that most biogenic gas has to migrate into the gas hydrate stability zone and has to be at levels in excess of solubility for gas hydrates to form. Gas hydrates had been considered ‘self-sealing’ but evidence from pressure cores and laboratory experiments indicate that gas hydrate deposits may need local seals. Detection of gas hydrates though seismic and other remote sensing methods has been demonstrated through drilling and coring programs. The GC955 site in the Gulf of Mexico is used as an example to demonstrate exploration concepts, through basin models, seismic detection, and drilling and coring results. Data from other locations are also discussed. A review of remote sensing data that could be used to delineate and quantify gas hydrate deposits is presented with an emphasis on low frequency exploration 3D seismic for imaging gas hydrate deposits at the base of gas hydrate stability.","PeriodicalId":10968,"journal":{"name":"Day 3 Wed, May 08, 2019","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas Hydrate Prospecting and Characterization\",\"authors\":\"D. McConnell\",\"doi\":\"10.4043/29604-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Data acquired from major gas hydrate field programs over the past 20 years has led to much better understanding of the distribution of gas hydrate on the continental margins and how to detect them. Gas hydrate systems are extensions of the conventional hydrocarbon system but are much more closely related to biogenic gas systems. The temperatures at which most biogenic gas is generated is mostly below the base of gas hydrate stability which means that most biogenic gas has to migrate into the gas hydrate stability zone and has to be at levels in excess of solubility for gas hydrates to form. Gas hydrates had been considered ‘self-sealing’ but evidence from pressure cores and laboratory experiments indicate that gas hydrate deposits may need local seals. Detection of gas hydrates though seismic and other remote sensing methods has been demonstrated through drilling and coring programs. The GC955 site in the Gulf of Mexico is used as an example to demonstrate exploration concepts, through basin models, seismic detection, and drilling and coring results. Data from other locations are also discussed. A review of remote sensing data that could be used to delineate and quantify gas hydrate deposits is presented with an emphasis on low frequency exploration 3D seismic for imaging gas hydrate deposits at the base of gas hydrate stability.\",\"PeriodicalId\":10968,\"journal\":{\"name\":\"Day 3 Wed, May 08, 2019\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, May 08, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29604-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, May 08, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29604-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的20年里,从主要的天然气水合物项目中获得的数据使人们对大陆边缘天然气水合物的分布以及如何探测它们有了更好的了解。天然气水合物系统是常规烃类系统的延伸,但与生物气系统的关系更为密切。大多数生物气产生的温度大多低于天然气水合物稳定的基础,这意味着大多数生物气必须迁移到天然气水合物稳定区,并且必须处于超过溶解度的水平才能形成天然气水合物。天然气水合物被认为是“自密封”的,但来自压力岩心和实验室实验的证据表明,天然气水合物矿床可能需要局部密封。利用地震和其他遥感方法探测天然气水合物已经通过钻井和取心程序得到了验证。以墨西哥湾的GC955油田为例,通过盆地模型、地震探测和钻井取芯结果,展示了勘探概念。还讨论了其他地点的数据。综述了近年来用于天然气水合物圈定和量化的遥感数据,重点介绍了在天然气水合物稳定性基础上的低频勘探三维地震成像技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gas Hydrate Prospecting and Characterization
Data acquired from major gas hydrate field programs over the past 20 years has led to much better understanding of the distribution of gas hydrate on the continental margins and how to detect them. Gas hydrate systems are extensions of the conventional hydrocarbon system but are much more closely related to biogenic gas systems. The temperatures at which most biogenic gas is generated is mostly below the base of gas hydrate stability which means that most biogenic gas has to migrate into the gas hydrate stability zone and has to be at levels in excess of solubility for gas hydrates to form. Gas hydrates had been considered ‘self-sealing’ but evidence from pressure cores and laboratory experiments indicate that gas hydrate deposits may need local seals. Detection of gas hydrates though seismic and other remote sensing methods has been demonstrated through drilling and coring programs. The GC955 site in the Gulf of Mexico is used as an example to demonstrate exploration concepts, through basin models, seismic detection, and drilling and coring results. Data from other locations are also discussed. A review of remote sensing data that could be used to delineate and quantify gas hydrate deposits is presented with an emphasis on low frequency exploration 3D seismic for imaging gas hydrate deposits at the base of gas hydrate stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Offshore Liquefied Natural Gas LNG and Monetization A Case Study of an Independent Third Party Review of Subsea HPHT Technologies Designed and Qualified by a Joint Development Agreement Optimized SMR Process with Advanced Vessel Economizer Experimental and Numerical Studies on the Drift Velocity of Two-Phase Gas and High-Viscosity-Liquid Slug Flow in Pipelines Applied Optimal Reservoir Management: A Field Case Experience in Campos Basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1