微裂纹介质中的稳态传热

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Mechanics & Industry Pub Date : 2020-08-14 DOI:10.1051/meca/2020034
Sharan Raj Rangasamy Mahendren, H. Welemane, O. Dalverny, A. Tongne
{"title":"微裂纹介质中的稳态传热","authors":"Sharan Raj Rangasamy Mahendren, H. Welemane, O. Dalverny, A. Tongne","doi":"10.1051/meca/2020034","DOIUrl":null,"url":null,"abstract":"Material behaviour is often affected by the heterogeneities existing at the microscopic level. Especially the presence of cracks, voids, etc collectively known as defects, can play a major role in their overall response. Homogenization can be used to study the influence of these heterogeneities and also to estimate the effective properties of a given material. Several research works have been dedicated to determining the elastic behaviour of microcracked media. Yet, thermal properties are not investigated as much. Moreover, the question of unilateral effect (opening/closing of cracks) still remains an important issue. So, this paper aims to provide the effective thermal conductivity of 2D microcracked media with arbitrarily orientated cracks, either open or closed. With the help of Eshelby-like approach, homogenization schemes (dilute and Mori-Tanaka) and bounds (Ponte Castañeda-Willis) are developed to provide the closed-form expressions. In addition, these results are compared to numerical simulations performed based on finite element modelling.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Steady-state heat transfer in microcracked media\",\"authors\":\"Sharan Raj Rangasamy Mahendren, H. Welemane, O. Dalverny, A. Tongne\",\"doi\":\"10.1051/meca/2020034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Material behaviour is often affected by the heterogeneities existing at the microscopic level. Especially the presence of cracks, voids, etc collectively known as defects, can play a major role in their overall response. Homogenization can be used to study the influence of these heterogeneities and also to estimate the effective properties of a given material. Several research works have been dedicated to determining the elastic behaviour of microcracked media. Yet, thermal properties are not investigated as much. Moreover, the question of unilateral effect (opening/closing of cracks) still remains an important issue. So, this paper aims to provide the effective thermal conductivity of 2D microcracked media with arbitrarily orientated cracks, either open or closed. With the help of Eshelby-like approach, homogenization schemes (dilute and Mori-Tanaka) and bounds (Ponte Castañeda-Willis) are developed to provide the closed-form expressions. In addition, these results are compared to numerical simulations performed based on finite element modelling.\",\"PeriodicalId\":49018,\"journal\":{\"name\":\"Mechanics & Industry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics & Industry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1051/meca/2020034\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1051/meca/2020034","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

材料的行为常常受到存在于微观水平上的非均质性的影响。特别是裂纹、空洞等统称为缺陷的存在,可以在其整体响应中发挥重要作用。均质化可以用来研究这些非均质性的影响,也可以用来估计给定材料的有效性能。一些研究工作致力于确定微裂纹介质的弹性行为。然而,对其热性能的研究并不多。此外,单边效应(裂缝的打开/关闭)的问题仍然是一个重要的问题。因此,本文旨在提供具有任意方向裂纹(开放或闭合)的二维微裂纹介质的有效导热系数。在Eshelby-like方法的帮助下,建立了均质格式(稀释格式和Mori-Tanaka格式)和界(Ponte Castañeda-Willis格式)来提供封闭形式的表达式。此外,将这些结果与基于有限元模型的数值模拟进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Steady-state heat transfer in microcracked media
Material behaviour is often affected by the heterogeneities existing at the microscopic level. Especially the presence of cracks, voids, etc collectively known as defects, can play a major role in their overall response. Homogenization can be used to study the influence of these heterogeneities and also to estimate the effective properties of a given material. Several research works have been dedicated to determining the elastic behaviour of microcracked media. Yet, thermal properties are not investigated as much. Moreover, the question of unilateral effect (opening/closing of cracks) still remains an important issue. So, this paper aims to provide the effective thermal conductivity of 2D microcracked media with arbitrarily orientated cracks, either open or closed. With the help of Eshelby-like approach, homogenization schemes (dilute and Mori-Tanaka) and bounds (Ponte Castañeda-Willis) are developed to provide the closed-form expressions. In addition, these results are compared to numerical simulations performed based on finite element modelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics & Industry
Mechanics & Industry ENGINEERING, MECHANICAL-MECHANICS
CiteScore
2.80
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: An International Journal on Mechanical Sciences and Engineering Applications With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities. Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.
期刊最新文献
Numerical investigation of thermal buckling and post-buckling behavior of an EN AW 6016-T4 car roof assembled in a steel body-in-white Analyzing the influence of lifter design and ball mill speed on grinding performance, particle behavior and contact forces A neural network-based data-driven local modeling of spotwelded plates under impact Multi-objective shape optimization of developable Bézier-like surfaces using non-dominated sorting genetic algorithm Experimental quantification of heat haze errors in stereo-DIC displacements: Application to thermoplastics thermoforming temperature range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1