AlCl3中离子到分子的转变:电子结构的检验

PhysChemComm Pub Date : 2002-01-01 DOI:10.1039/B107715E
L. Bernasconi, P. Madden, M. Wilson
{"title":"AlCl3中离子到分子的转变:电子结构的检验","authors":"L. Bernasconi, P. Madden, M. Wilson","doi":"10.1039/B107715E","DOIUrl":null,"url":null,"abstract":"AlCl 3 crystallizes as an ionic solid but melts to form a molecular liquid consisting of Al 2 Cl 6 units. In order to see if this transition involves a major change in electronic structure, the dimer and crystal of AlCl 3 are examined with the aid of generalized gradient corrected density functional theory (GGC-DFT) calculations and the electronic wavefunctions examined with the aid of a Wannier localisation transformation of the Kohn–Sham eigenfunctions. The change from octahedral to tetrahedral coordination of Al which is observed on melting has been induced by simply rescaling the unit cell parameters, and the variations in the hybridization of the Wannier orbitals across the transition have been analysed thoroughly. The predominantly ionic character of the interactions across the ionic to molecular transition is confirmed, validating the use of ionic interaction potentials to represent AlCl 3 and related systems. Dipole moments of the single ions have been estimated from the position of the Wannier function centres and they are found to reproduce with remarkable accuracy the values predicted by a polarizable ionic interaction potential. A similar analysis has been carried over to the AlBr 3 –Al 2 Br 6 system, which is known to consist of molecular units in both crystal and gas phase.","PeriodicalId":20106,"journal":{"name":"PhysChemComm","volume":"2 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Ionic to molecular transition in AlCl3: an examination of the electronic structure\",\"authors\":\"L. Bernasconi, P. Madden, M. Wilson\",\"doi\":\"10.1039/B107715E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AlCl 3 crystallizes as an ionic solid but melts to form a molecular liquid consisting of Al 2 Cl 6 units. In order to see if this transition involves a major change in electronic structure, the dimer and crystal of AlCl 3 are examined with the aid of generalized gradient corrected density functional theory (GGC-DFT) calculations and the electronic wavefunctions examined with the aid of a Wannier localisation transformation of the Kohn–Sham eigenfunctions. The change from octahedral to tetrahedral coordination of Al which is observed on melting has been induced by simply rescaling the unit cell parameters, and the variations in the hybridization of the Wannier orbitals across the transition have been analysed thoroughly. The predominantly ionic character of the interactions across the ionic to molecular transition is confirmed, validating the use of ionic interaction potentials to represent AlCl 3 and related systems. Dipole moments of the single ions have been estimated from the position of the Wannier function centres and they are found to reproduce with remarkable accuracy the values predicted by a polarizable ionic interaction potential. A similar analysis has been carried over to the AlBr 3 –Al 2 Br 6 system, which is known to consist of molecular units in both crystal and gas phase.\",\"PeriodicalId\":20106,\"journal\":{\"name\":\"PhysChemComm\",\"volume\":\"2 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PhysChemComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/B107715E\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhysChemComm","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/B107715E","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

alcl3结晶为离子固体,但熔化后形成由alcl6单元组成的分子液体。为了了解这种转变是否涉及电子结构的重大变化,借助广义梯度校正密度泛函理论(GGC-DFT)计算检查了alcl3的二聚体和晶体,并借助Kohn-Sham特征函数的万尼尔局部化变换检查了电子波函数。通过简单地调整单元胞参数,推导了铝在熔融过程中由八面体配位到四面体配位的变化,并对整个转变过程中万尼尔轨道杂化的变化进行了深入分析。通过离子到分子过渡的相互作用的主要离子特征被证实,验证了使用离子相互作用势来表示AlCl 3和相关体系。从万尼尔函数中心的位置估计了单离子的偶极矩,发现它们与极化离子相互作用势预测的值具有显著的准确性。类似的分析也被用于albr3 - al2br6体系,该体系已知由晶体和气相的分子单元组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ionic to molecular transition in AlCl3: an examination of the electronic structure
AlCl 3 crystallizes as an ionic solid but melts to form a molecular liquid consisting of Al 2 Cl 6 units. In order to see if this transition involves a major change in electronic structure, the dimer and crystal of AlCl 3 are examined with the aid of generalized gradient corrected density functional theory (GGC-DFT) calculations and the electronic wavefunctions examined with the aid of a Wannier localisation transformation of the Kohn–Sham eigenfunctions. The change from octahedral to tetrahedral coordination of Al which is observed on melting has been induced by simply rescaling the unit cell parameters, and the variations in the hybridization of the Wannier orbitals across the transition have been analysed thoroughly. The predominantly ionic character of the interactions across the ionic to molecular transition is confirmed, validating the use of ionic interaction potentials to represent AlCl 3 and related systems. Dipole moments of the single ions have been estimated from the position of the Wannier function centres and they are found to reproduce with remarkable accuracy the values predicted by a polarizable ionic interaction potential. A similar analysis has been carried over to the AlBr 3 –Al 2 Br 6 system, which is known to consist of molecular units in both crystal and gas phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical studies of the electronic properties of confined aromatic molecules in support of electronic confinement effect Theoretical studies on hyperpolarizabilities and UV-vis-IR spectra of a diamminecobalt(III) tetripeptide transition-metal complex Thermoacoustical approach to the intermolecular free-length of liquid mixtures H2O-catalyzed formation of O3 in the self-reaction of HO2: a computational study on the effect of nH2O (n = 1–3) Formation energies of lithium intercalations in AlSb, GaSb and InSb
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1