{"title":"基于蚁群算法和遗传算法的英语文本识别模型仿真","authors":"Fei Long","doi":"10.3233/JIFS-189807","DOIUrl":null,"url":null,"abstract":"The difficulty of English text recognition lies in fuzzy image text classification and part-of-speech classification. Traditional models have a high error rate in English text recognition. In order to improve the effect of English text recognition, guided by machine learning ideas, this paper combines ant colony algorithm and genetic algorithm to construct an English text recognition model based on machine learning. Moreover, based on the characteristics of ant colony intelligent algorithm optimization, a method of using ant colony algorithm to solve the central node is proposed. In addition, this paper uses the ant colony algorithm to obtain the characteristic points in the study area and determine a reasonable number, and then combine the uniform grid to select some non-characteristic points as the central node of the core function, and finally use the central node with a reasonable distribution for modeling. Finally, this paper designs experiments to verify the performance of the model constructed in this paper and combines mathematical statistics to visually display the experimental results using tables and graphs. The research results show that the performance of the model constructed in this paper is good.","PeriodicalId":44705,"journal":{"name":"International Journal of Fuzzy Logic and Intelligent Systems","volume":"08 1","pages":"1-12"},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simulation of English text recognition model based on ant colony algorithm and genetic algorithm\",\"authors\":\"Fei Long\",\"doi\":\"10.3233/JIFS-189807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The difficulty of English text recognition lies in fuzzy image text classification and part-of-speech classification. Traditional models have a high error rate in English text recognition. In order to improve the effect of English text recognition, guided by machine learning ideas, this paper combines ant colony algorithm and genetic algorithm to construct an English text recognition model based on machine learning. Moreover, based on the characteristics of ant colony intelligent algorithm optimization, a method of using ant colony algorithm to solve the central node is proposed. In addition, this paper uses the ant colony algorithm to obtain the characteristic points in the study area and determine a reasonable number, and then combine the uniform grid to select some non-characteristic points as the central node of the core function, and finally use the central node with a reasonable distribution for modeling. Finally, this paper designs experiments to verify the performance of the model constructed in this paper and combines mathematical statistics to visually display the experimental results using tables and graphs. The research results show that the performance of the model constructed in this paper is good.\",\"PeriodicalId\":44705,\"journal\":{\"name\":\"International Journal of Fuzzy Logic and Intelligent Systems\",\"volume\":\"08 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fuzzy Logic and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/JIFS-189807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy Logic and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/JIFS-189807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Simulation of English text recognition model based on ant colony algorithm and genetic algorithm
The difficulty of English text recognition lies in fuzzy image text classification and part-of-speech classification. Traditional models have a high error rate in English text recognition. In order to improve the effect of English text recognition, guided by machine learning ideas, this paper combines ant colony algorithm and genetic algorithm to construct an English text recognition model based on machine learning. Moreover, based on the characteristics of ant colony intelligent algorithm optimization, a method of using ant colony algorithm to solve the central node is proposed. In addition, this paper uses the ant colony algorithm to obtain the characteristic points in the study area and determine a reasonable number, and then combine the uniform grid to select some non-characteristic points as the central node of the core function, and finally use the central node with a reasonable distribution for modeling. Finally, this paper designs experiments to verify the performance of the model constructed in this paper and combines mathematical statistics to visually display the experimental results using tables and graphs. The research results show that the performance of the model constructed in this paper is good.
期刊介绍:
The International Journal of Fuzzy Logic and Intelligent Systems (pISSN 1598-2645, eISSN 2093-744X) is published quarterly by the Korean Institute of Intelligent Systems. The official title of the journal is International Journal of Fuzzy Logic and Intelligent Systems and the abbreviated title is Int. J. Fuzzy Log. Intell. Syst. Some, or all, of the articles in the journal are indexed in SCOPUS, Korea Citation Index (KCI), DOI/CrossrRef, DBLP, and Google Scholar. The journal was launched in 2001 and dedicated to the dissemination of well-defined theoretical and empirical studies results that have a potential impact on the realization of intelligent systems based on fuzzy logic and intelligent systems theory. Specific topics include, but are not limited to: a) computational intelligence techniques including fuzzy logic systems, neural networks and evolutionary computation; b) intelligent control, instrumentation and robotics; c) adaptive signal and multimedia processing; d) intelligent information processing including pattern recognition and information processing; e) machine learning and smart systems including data mining and intelligent service practices; f) fuzzy theory and its applications.