{"title":"Riesz步行的返回概率和自相似度","authors":"Ryota Hanaoka, N. Konno","doi":"10.26421/QIC21.5-6-5","DOIUrl":null,"url":null,"abstract":"The quantum walk is a counterpart of the random walk. The 2-state quantum walk in one dimension can be determined by a measure on the unit circle in the complex plane. As for the singular continuous measure, results on the corresponding quantum walk are limited. In this situation, we focus on a quantum walk, called the Riesz walk, given by the Riesz measure which is one of the famous singular continuous measures. The present paper is devoted to the return probability of the Riesz walk. Furthermore, we present some conjectures on the self-similarity of the walk.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"1 1","pages":"409-422"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Return probability and self-similarity of the Riesz walk\",\"authors\":\"Ryota Hanaoka, N. Konno\",\"doi\":\"10.26421/QIC21.5-6-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quantum walk is a counterpart of the random walk. The 2-state quantum walk in one dimension can be determined by a measure on the unit circle in the complex plane. As for the singular continuous measure, results on the corresponding quantum walk are limited. In this situation, we focus on a quantum walk, called the Riesz walk, given by the Riesz measure which is one of the famous singular continuous measures. The present paper is devoted to the return probability of the Riesz walk. Furthermore, we present some conjectures on the self-similarity of the walk.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"1 1\",\"pages\":\"409-422\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/QIC21.5-6-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC21.5-6-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Return probability and self-similarity of the Riesz walk
The quantum walk is a counterpart of the random walk. The 2-state quantum walk in one dimension can be determined by a measure on the unit circle in the complex plane. As for the singular continuous measure, results on the corresponding quantum walk are limited. In this situation, we focus on a quantum walk, called the Riesz walk, given by the Riesz measure which is one of the famous singular continuous measures. The present paper is devoted to the return probability of the Riesz walk. Furthermore, we present some conjectures on the self-similarity of the walk.