{"title":"半晶聚合物在单轴加载-卸载作用下的有限变形行为建模","authors":"N. Dusunceli","doi":"10.1177/0095244310368126","DOIUrl":null,"url":null,"abstract":"The aim of this work is to investigate the finite deformation behavior of polymeric materials under monotonic loading—unloading. The strain rate sensitivity behaviors of polymeric materials were modeled using viscoplasticity theory based on an overstress (VBO) model. The modeling capability of the VBO model was improved to describe the nonlinear stress—strain behavior of the fully inelastic flow region in loading at small strain level. In this model, the tangent modulus (Et) is taken nonlinearly to simulate this polymeric material behavior. The numerical results were compared to the experimental data in the literature. These results were in good agreement with the experimental data.","PeriodicalId":15644,"journal":{"name":"Journal of Elastomers and Plastics","volume":"21 1","pages":"347 - 364"},"PeriodicalIF":1.4000,"publicationDate":"2010-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modeling Finite Deformation Behavior of Semicrystalline Polymers under Uniaxial Loading—Unloading\",\"authors\":\"N. Dusunceli\",\"doi\":\"10.1177/0095244310368126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to investigate the finite deformation behavior of polymeric materials under monotonic loading—unloading. The strain rate sensitivity behaviors of polymeric materials were modeled using viscoplasticity theory based on an overstress (VBO) model. The modeling capability of the VBO model was improved to describe the nonlinear stress—strain behavior of the fully inelastic flow region in loading at small strain level. In this model, the tangent modulus (Et) is taken nonlinearly to simulate this polymeric material behavior. The numerical results were compared to the experimental data in the literature. These results were in good agreement with the experimental data.\",\"PeriodicalId\":15644,\"journal\":{\"name\":\"Journal of Elastomers and Plastics\",\"volume\":\"21 1\",\"pages\":\"347 - 364\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2010-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elastomers and Plastics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/0095244310368126\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elastomers and Plastics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/0095244310368126","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Modeling Finite Deformation Behavior of Semicrystalline Polymers under Uniaxial Loading—Unloading
The aim of this work is to investigate the finite deformation behavior of polymeric materials under monotonic loading—unloading. The strain rate sensitivity behaviors of polymeric materials were modeled using viscoplasticity theory based on an overstress (VBO) model. The modeling capability of the VBO model was improved to describe the nonlinear stress—strain behavior of the fully inelastic flow region in loading at small strain level. In this model, the tangent modulus (Et) is taken nonlinearly to simulate this polymeric material behavior. The numerical results were compared to the experimental data in the literature. These results were in good agreement with the experimental data.
期刊介绍:
The Journal of Elastomers and Plastics is a high quality peer-reviewed journal which publishes original research on the development and marketing of elastomers and plastics and the area in between where the characteristics of both extremes are apparent. The journal covers: advances in chemistry, processing, properties and applications; new information on thermoplastic elastomers, reinforced elastomers, natural rubbers, blends and alloys, and fillers and additives.