{"title":"拉拔轮动力学的数值模拟。滚动无滑动情况","authors":"Vladimir Dragoş Tătaru, M. Tătaru","doi":"10.2478/bsmm-2019-0005","DOIUrl":null,"url":null,"abstract":"Abstract When the dynamic study of a solid rigid body subjected to links is wanted to be performed, the main difficulty is that the differential equations of motion contain in their structure the constraint forces which are unknown. Therefore it is necessary to remove them from the differential equations that describe the motion of the rigid body. The case of a wheel climbing on an inclined plane has been presented in this paper. It is considered that the wheel is rolling without sliding on an inclined plane.","PeriodicalId":30754,"journal":{"name":"Scientific Bulletin of Valahia University Materials and Mechanics","volume":"69 1","pages":"32 - 38"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Modeling of the Dynamics of the Drawn Wheel. Case of Rolling Without Sliding\",\"authors\":\"Vladimir Dragoş Tătaru, M. Tătaru\",\"doi\":\"10.2478/bsmm-2019-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract When the dynamic study of a solid rigid body subjected to links is wanted to be performed, the main difficulty is that the differential equations of motion contain in their structure the constraint forces which are unknown. Therefore it is necessary to remove them from the differential equations that describe the motion of the rigid body. The case of a wheel climbing on an inclined plane has been presented in this paper. It is considered that the wheel is rolling without sliding on an inclined plane.\",\"PeriodicalId\":30754,\"journal\":{\"name\":\"Scientific Bulletin of Valahia University Materials and Mechanics\",\"volume\":\"69 1\",\"pages\":\"32 - 38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Bulletin of Valahia University Materials and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/bsmm-2019-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Bulletin of Valahia University Materials and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bsmm-2019-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Modeling of the Dynamics of the Drawn Wheel. Case of Rolling Without Sliding
Abstract When the dynamic study of a solid rigid body subjected to links is wanted to be performed, the main difficulty is that the differential equations of motion contain in their structure the constraint forces which are unknown. Therefore it is necessary to remove them from the differential equations that describe the motion of the rigid body. The case of a wheel climbing on an inclined plane has been presented in this paper. It is considered that the wheel is rolling without sliding on an inclined plane.