足球运动员位置的机器学习

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Decision Support System Technology Pub Date : 2022-01-01 DOI:10.4018/ijdsst.286678
Umberto Di Giacomo, F. Mercaldo, A. Santone, Giovanni Capobianco
{"title":"足球运动员位置的机器学习","authors":"Umberto Di Giacomo, F. Mercaldo, A. Santone, Giovanni Capobianco","doi":"10.4018/ijdsst.286678","DOIUrl":null,"url":null,"abstract":"During the last few years, sports analytics has been growing rapidly. The main usage of this discipline is the prediction of soccer match results, even if it can be applied with interesting results in different areas, such as analysis based on the player position information. In this paper, we propose an approach aimed to recognize the player position in a soccer match, predicting the specific zone in which the player is located in a specific moment. Similar objectives have never been considered yet with our best knowledge. We consider supervised machine learning techniques by considering a dataset obtained through video capturing and tracking system. The data analyzed refer to several professional soccer games captured at the Alfheim Stadium in Tromso, Norway. The approach can be used in real-time, in order to verify if a player is playing according to the guidelines of the coach. In the experimental analysis, three different types of classification have been performed, i.e., three different divisions of the field, reaching the best results with Random Tree Algorithm.","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":"10 1","pages":"1-19"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning on Soccer Player Positions\",\"authors\":\"Umberto Di Giacomo, F. Mercaldo, A. Santone, Giovanni Capobianco\",\"doi\":\"10.4018/ijdsst.286678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the last few years, sports analytics has been growing rapidly. The main usage of this discipline is the prediction of soccer match results, even if it can be applied with interesting results in different areas, such as analysis based on the player position information. In this paper, we propose an approach aimed to recognize the player position in a soccer match, predicting the specific zone in which the player is located in a specific moment. Similar objectives have never been considered yet with our best knowledge. We consider supervised machine learning techniques by considering a dataset obtained through video capturing and tracking system. The data analyzed refer to several professional soccer games captured at the Alfheim Stadium in Tromso, Norway. The approach can be used in real-time, in order to verify if a player is playing according to the guidelines of the coach. In the experimental analysis, three different types of classification have been performed, i.e., three different divisions of the field, reaching the best results with Random Tree Algorithm.\",\"PeriodicalId\":42414,\"journal\":{\"name\":\"International Journal of Decision Support System Technology\",\"volume\":\"10 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Decision Support System Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdsst.286678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdsst.286678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年里,体育分析一直在快速发展。这门学科的主要用途是足球比赛结果的预测,即使它可以应用于不同领域的有趣结果,例如基于球员位置信息的分析。在本文中,我们提出了一种旨在识别足球比赛中球员位置的方法,预测球员在特定时刻所处的特定区域。据我们所知,还从未考虑过类似的目标。我们通过考虑通过视频捕获和跟踪系统获得的数据集来考虑监督机器学习技术。分析的数据参考了在挪威特罗姆瑟的阿尔夫海姆体育场拍摄的几场职业足球比赛。这种方法可以实时使用,以验证球员是否按照教练的指导进行比赛。在实验分析中,我们进行了三种不同类型的分类,即三种不同的领域划分,使用Random Tree算法得到了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning on Soccer Player Positions
During the last few years, sports analytics has been growing rapidly. The main usage of this discipline is the prediction of soccer match results, even if it can be applied with interesting results in different areas, such as analysis based on the player position information. In this paper, we propose an approach aimed to recognize the player position in a soccer match, predicting the specific zone in which the player is located in a specific moment. Similar objectives have never been considered yet with our best knowledge. We consider supervised machine learning techniques by considering a dataset obtained through video capturing and tracking system. The data analyzed refer to several professional soccer games captured at the Alfheim Stadium in Tromso, Norway. The approach can be used in real-time, in order to verify if a player is playing according to the guidelines of the coach. In the experimental analysis, three different types of classification have been performed, i.e., three different divisions of the field, reaching the best results with Random Tree Algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Decision Support System Technology
International Journal of Decision Support System Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
18.20%
发文量
40
期刊最新文献
A Novel Query Method for Spatial Database Based on Improved K-Nearest Neighbor Algorithm Analysis and Evaluation of Roadblocks Hindering Lean-Green and Industry 4.0 Practices in Indian Manufacturing Industries Developing Fuzzy-AHP-Integrated Hybrid MCDM System of COPRAS-ARAS for Solving an Industrial Robot Selection Problem Generalized Parametric Intuitionistic Fuzzy Measures Based on Trigonometric Functions for Improved Decision-Making Problem An Efficient Method to Decide the Malicious Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1