神经成像分类的多路多级核建模

Lifang He, Chun-Ta Lu, Hao Ding, Shen Wang, L. Shen, Philip S. Yu, A. Ragin
{"title":"神经成像分类的多路多级核建模","authors":"Lifang He, Chun-Ta Lu, Hao Ding, Shen Wang, L. Shen, Philip S. Yu, A. Ragin","doi":"10.1109/CVPR.2017.724","DOIUrl":null,"url":null,"abstract":"Owing to prominence as a diagnostic tool for probing the neural correlates of cognition, neuroimaging tensor data has been the focus of intense investigation. Although many supervised tensor learning approaches have been proposed, they either cannot capture the nonlinear relationships of tensor data or cannot preserve the complex multi-way structural information. In this paper, we propose a Multi-way Multi-level Kernel (MMK) model that can extract discriminative, nonlinear and structural preserving representations of tensor data. Specifically, we introduce a kernelized CP tensor factorization technique, which is equivalent to performing the low-rank tensor factorization in a possibly much higher dimensional space that is implicitly defined by the kernel function. We further employ a multi-way nonlinear feature mapping to derive the dual structural preserving kernels, which are used in conjunction with kernel machines (e.g., SVM). Extensive experiments on real-world neuroimages demonstrate that the proposed MMK method can effectively boost the classification performance on diverse brain disorders (i.e., Alzheimers disease, ADHD, and HIV).","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"8 1","pages":"6846-6854"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Multi-way Multi-level Kernel Modeling for Neuroimaging Classification\",\"authors\":\"Lifang He, Chun-Ta Lu, Hao Ding, Shen Wang, L. Shen, Philip S. Yu, A. Ragin\",\"doi\":\"10.1109/CVPR.2017.724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to prominence as a diagnostic tool for probing the neural correlates of cognition, neuroimaging tensor data has been the focus of intense investigation. Although many supervised tensor learning approaches have been proposed, they either cannot capture the nonlinear relationships of tensor data or cannot preserve the complex multi-way structural information. In this paper, we propose a Multi-way Multi-level Kernel (MMK) model that can extract discriminative, nonlinear and structural preserving representations of tensor data. Specifically, we introduce a kernelized CP tensor factorization technique, which is equivalent to performing the low-rank tensor factorization in a possibly much higher dimensional space that is implicitly defined by the kernel function. We further employ a multi-way nonlinear feature mapping to derive the dual structural preserving kernels, which are used in conjunction with kernel machines (e.g., SVM). Extensive experiments on real-world neuroimages demonstrate that the proposed MMK method can effectively boost the classification performance on diverse brain disorders (i.e., Alzheimers disease, ADHD, and HIV).\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"8 1\",\"pages\":\"6846-6854\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

由于神经成像张量数据作为探测认知神经相关的诊断工具的突出地位,一直是激烈研究的焦点。尽管已有许多监督张量学习方法被提出,但它们要么不能捕捉张量数据的非线性关系,要么不能保留复杂的多路结构信息。本文提出了一种多路多级核(MMK)模型,该模型可以提取张量数据的判别、非线性和结构保持表示。具体来说,我们引入了一种核化CP张量分解技术,它相当于在一个可能由核函数隐式定义的高维空间中执行低秩张量分解。我们进一步采用多路非线性特征映射来导出与核机(例如SVM)结合使用的对偶结构保持核。在真实世界的神经图像上进行的大量实验表明,所提出的MMK方法可以有效地提高对多种脑部疾病(如阿尔茨海默病、多动症和艾滋病毒)的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-way Multi-level Kernel Modeling for Neuroimaging Classification
Owing to prominence as a diagnostic tool for probing the neural correlates of cognition, neuroimaging tensor data has been the focus of intense investigation. Although many supervised tensor learning approaches have been proposed, they either cannot capture the nonlinear relationships of tensor data or cannot preserve the complex multi-way structural information. In this paper, we propose a Multi-way Multi-level Kernel (MMK) model that can extract discriminative, nonlinear and structural preserving representations of tensor data. Specifically, we introduce a kernelized CP tensor factorization technique, which is equivalent to performing the low-rank tensor factorization in a possibly much higher dimensional space that is implicitly defined by the kernel function. We further employ a multi-way nonlinear feature mapping to derive the dual structural preserving kernels, which are used in conjunction with kernel machines (e.g., SVM). Extensive experiments on real-world neuroimages demonstrate that the proposed MMK method can effectively boost the classification performance on diverse brain disorders (i.e., Alzheimers disease, ADHD, and HIV).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FFTLasso: Large-Scale LASSO in the Fourier Domain Semantically Coherent Co-Segmentation and Reconstruction of Dynamic Scenes Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces Joint Gap Detection and Inpainting of Line Drawings Wetness and Color from a Single Multispectral Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1