{"title":"使用神经网络的个性化自适应学习","authors":"Devendra Singh Chaplot, Eunhee Rhim, J. Kim","doi":"10.1145/2876034.2893397","DOIUrl":null,"url":null,"abstract":"Adaptive learning is the core technology behind intelligent tutoring systems, which are responsible for estimating student knowledge and providing personalized instruction to students based on their skill level. In this paper, we present a new adaptive learning system architecture, which uses Artificial Neural Network to construct the Learner Model, which automatically models relationship between different concepts in the curriculum and beats Knowledge Tracing in predicting student performance. We also propose a novel method for selecting items of optimal difficulty, personalized to student's skill level and learning rate, which decreases their learning time by 26.5% as compared to standard pre-defined curriculum sequence item selection policy.","PeriodicalId":20739,"journal":{"name":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Personalized Adaptive Learning using Neural Networks\",\"authors\":\"Devendra Singh Chaplot, Eunhee Rhim, J. Kim\",\"doi\":\"10.1145/2876034.2893397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive learning is the core technology behind intelligent tutoring systems, which are responsible for estimating student knowledge and providing personalized instruction to students based on their skill level. In this paper, we present a new adaptive learning system architecture, which uses Artificial Neural Network to construct the Learner Model, which automatically models relationship between different concepts in the curriculum and beats Knowledge Tracing in predicting student performance. We also propose a novel method for selecting items of optimal difficulty, personalized to student's skill level and learning rate, which decreases their learning time by 26.5% as compared to standard pre-defined curriculum sequence item selection policy.\",\"PeriodicalId\":20739,\"journal\":{\"name\":\"Proceedings of the Third (2016) ACM Conference on Learning @ Scale\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third (2016) ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2876034.2893397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2876034.2893397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Personalized Adaptive Learning using Neural Networks
Adaptive learning is the core technology behind intelligent tutoring systems, which are responsible for estimating student knowledge and providing personalized instruction to students based on their skill level. In this paper, we present a new adaptive learning system architecture, which uses Artificial Neural Network to construct the Learner Model, which automatically models relationship between different concepts in the curriculum and beats Knowledge Tracing in predicting student performance. We also propose a novel method for selecting items of optimal difficulty, personalized to student's skill level and learning rate, which decreases their learning time by 26.5% as compared to standard pre-defined curriculum sequence item selection policy.