使用CycleGAN将真人头像转换为卡通头像

Wenxin Tian
{"title":"使用CycleGAN将真人头像转换为卡通头像","authors":"Wenxin Tian","doi":"10.5121/csit.2022.121816","DOIUrl":null,"url":null,"abstract":"Cartoons are an important art style, which not only has a unique drawing effect but also reflects the character itself, which is gradually loved by people. With the development of image processing technology, people's research on image research is no longer limited to image recognition, target detection, and tracking, but also images In this paper, we use deep learning based image processing to generate cartoon caricatures of human faces. Therefore, this paper investigates the use of deep learning-based methods to learn face features and convert image styles while preserving the original content features, to automatically generate natural cartoon avatars. In this paper, we study a face cartoon generation method based on content invariance. In the task of image style conversion, the content is fused with different style features based on the invariance of content information, to achieve the style conversion.","PeriodicalId":91205,"journal":{"name":"Artificial intelligence and applications (Commerce, Calif.)","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Converting Real Human Avatar to Cartoon Avatar using CycleGAN\",\"authors\":\"Wenxin Tian\",\"doi\":\"10.5121/csit.2022.121816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cartoons are an important art style, which not only has a unique drawing effect but also reflects the character itself, which is gradually loved by people. With the development of image processing technology, people's research on image research is no longer limited to image recognition, target detection, and tracking, but also images In this paper, we use deep learning based image processing to generate cartoon caricatures of human faces. Therefore, this paper investigates the use of deep learning-based methods to learn face features and convert image styles while preserving the original content features, to automatically generate natural cartoon avatars. In this paper, we study a face cartoon generation method based on content invariance. In the task of image style conversion, the content is fused with different style features based on the invariance of content information, to achieve the style conversion.\",\"PeriodicalId\":91205,\"journal\":{\"name\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2022.121816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence and applications (Commerce, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.121816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动画片是一种重要的艺术风格,它不仅具有独特的绘画效果,而且还能反映人物本身,逐渐受到人们的喜爱。随着图像处理技术的发展,人们对图像的研究已经不再局限于图像识别、目标检测、跟踪,而是对图像的研究。本文采用基于深度学习的图像处理技术生成人脸卡通漫画。因此,本文研究利用基于深度学习的方法,在保留原始内容特征的情况下,学习人脸特征并转换图像样式,自动生成自然的卡通化身。本文研究了一种基于内容不变性的人脸卡通生成方法。在图像样式转换任务中,基于内容信息的不变性,将内容与不同的样式特征融合在一起,实现样式转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Converting Real Human Avatar to Cartoon Avatar using CycleGAN
Cartoons are an important art style, which not only has a unique drawing effect but also reflects the character itself, which is gradually loved by people. With the development of image processing technology, people's research on image research is no longer limited to image recognition, target detection, and tracking, but also images In this paper, we use deep learning based image processing to generate cartoon caricatures of human faces. Therefore, this paper investigates the use of deep learning-based methods to learn face features and convert image styles while preserving the original content features, to automatically generate natural cartoon avatars. In this paper, we study a face cartoon generation method based on content invariance. In the task of image style conversion, the content is fused with different style features based on the invariance of content information, to achieve the style conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Methodology of Measurement Intellectualization based on Regularized Bayesian Approach in Uncertain Conditions Stochastic Dual Coordinate Ascent for Learning Sign Constrained Linear Predictors Data Smoothing Filling Method based on ScRNA-Seq Data Zero-Value Identification Batch-Stochastic Sub-Gradient Method for Solving Non-Smooth Convex Loss Function Problems Teaching Reading Skills More Effectively
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1