基于图正则化神经上下文强盗的跨模态行为动力学学习

Xian Wu, Suleyman Cetintas, Deguang Kong, Miaoyu Lu, Jian Yang, N. Chawla
{"title":"基于图正则化神经上下文强盗的跨模态行为动力学学习","authors":"Xian Wu, Suleyman Cetintas, Deguang Kong, Miaoyu Lu, Jian Yang, N. Chawla","doi":"10.1145/3366423.3380178","DOIUrl":null,"url":null,"abstract":"Contextual multi-armed bandit algorithms have received significant attention in modeling users’ preferences for online personalized recommender systems in a timely manner. While significant progress has been made along this direction, a few major challenges have not been well addressed yet: (i) a vast majority of the literature is based on linear models that cannot capture complex non-linear inter-dependencies of user-item interactions; (ii) existing literature mainly ignores the latent relations among users and non-recommended items: hence may not properly reflect users’ preferences in the real-world; (iii) current solutions are mainly based on historical data and are prone to cold-start problems for new users who have no interaction history. To address the above challenges, we develop a Graph Regularized Cross-modal (GRC) learning model, a general framework to exploit transferable knowledge learned from user-item interactions as well as the external features of users and items in online personalized recommendations. In particular, the GRC framework leverage a non-linearity of neural network to model complex inherent structure of user-item interactions. We further augment GRC with the cooperation of the metric learning technique and a graph-constrained embedding module, to map the units from different dimensions (temporal, social and semantic) into the same latent space. An extensive set of experiments are conducted on two benchmark datasets as well as a large scale proprietary dataset from a major search engine demonstrates the power of the proposed GRC model in effectively capturing users’ dynamic preferences under different settings by outperforming all baselines by a large margin.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Learning from Cross-Modal Behavior Dynamics with Graph-Regularized Neural Contextual Bandit\",\"authors\":\"Xian Wu, Suleyman Cetintas, Deguang Kong, Miaoyu Lu, Jian Yang, N. Chawla\",\"doi\":\"10.1145/3366423.3380178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contextual multi-armed bandit algorithms have received significant attention in modeling users’ preferences for online personalized recommender systems in a timely manner. While significant progress has been made along this direction, a few major challenges have not been well addressed yet: (i) a vast majority of the literature is based on linear models that cannot capture complex non-linear inter-dependencies of user-item interactions; (ii) existing literature mainly ignores the latent relations among users and non-recommended items: hence may not properly reflect users’ preferences in the real-world; (iii) current solutions are mainly based on historical data and are prone to cold-start problems for new users who have no interaction history. To address the above challenges, we develop a Graph Regularized Cross-modal (GRC) learning model, a general framework to exploit transferable knowledge learned from user-item interactions as well as the external features of users and items in online personalized recommendations. In particular, the GRC framework leverage a non-linearity of neural network to model complex inherent structure of user-item interactions. We further augment GRC with the cooperation of the metric learning technique and a graph-constrained embedding module, to map the units from different dimensions (temporal, social and semantic) into the same latent space. An extensive set of experiments are conducted on two benchmark datasets as well as a large scale proprietary dataset from a major search engine demonstrates the power of the proposed GRC model in effectively capturing users’ dynamic preferences under different settings by outperforming all baselines by a large margin.\",\"PeriodicalId\":20754,\"journal\":{\"name\":\"Proceedings of The Web Conference 2020\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The Web Conference 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366423.3380178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

上下文多臂强盗算法在实时建模用户对在线个性化推荐系统的偏好方面受到了广泛关注。虽然沿着这个方向取得了重大进展,但一些主要挑战尚未得到很好的解决:(i)绝大多数文献是基于线性模型的,不能捕捉用户-物品交互的复杂非线性相互依赖关系;(ii)现有文献主要忽略了用户与非推荐项目之间的潜在关系,因此可能不能很好地反映现实世界中用户的偏好;(3)目前的解决方案主要基于历史数据,对于没有交互历史的新用户容易出现冷启动问题。为了解决上述挑战,我们开发了一个图正则化跨模态(GRC)学习模型,这是一个通用框架,用于利用从用户-项目交互中学习到的可转移知识,以及在线个性化推荐中用户和项目的外部特征。特别是,GRC框架利用神经网络的非线性来模拟用户-项目交互的复杂固有结构。通过度量学习技术和图约束嵌入模块的合作,我们进一步增强了GRC,将来自不同维度(时间、社会和语义)的单元映射到相同的潜在空间。在两个基准数据集以及来自主要搜索引擎的大规模专有数据集上进行了大量实验,证明了所提出的GRC模型在不同设置下有效捕获用户动态偏好的能力,并大大优于所有基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning from Cross-Modal Behavior Dynamics with Graph-Regularized Neural Contextual Bandit
Contextual multi-armed bandit algorithms have received significant attention in modeling users’ preferences for online personalized recommender systems in a timely manner. While significant progress has been made along this direction, a few major challenges have not been well addressed yet: (i) a vast majority of the literature is based on linear models that cannot capture complex non-linear inter-dependencies of user-item interactions; (ii) existing literature mainly ignores the latent relations among users and non-recommended items: hence may not properly reflect users’ preferences in the real-world; (iii) current solutions are mainly based on historical data and are prone to cold-start problems for new users who have no interaction history. To address the above challenges, we develop a Graph Regularized Cross-modal (GRC) learning model, a general framework to exploit transferable knowledge learned from user-item interactions as well as the external features of users and items in online personalized recommendations. In particular, the GRC framework leverage a non-linearity of neural network to model complex inherent structure of user-item interactions. We further augment GRC with the cooperation of the metric learning technique and a graph-constrained embedding module, to map the units from different dimensions (temporal, social and semantic) into the same latent space. An extensive set of experiments are conducted on two benchmark datasets as well as a large scale proprietary dataset from a major search engine demonstrates the power of the proposed GRC model in effectively capturing users’ dynamic preferences under different settings by outperforming all baselines by a large margin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gone, Gone, but Not Really, and Gone, But Not forgotten: A Typology of Website Recoverability Those who are left behind: A chronicle of internet access in Cuba Towards Automated Technologies in the Referencing Quality of Wikidata Companion of The Web Conference 2022, Virtual Event / Lyon, France, April 25 - 29, 2022 WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1