Hao Shen, Leming Liang, N. Law, Erik Hemberg, Una-May O’Reilly
{"title":"通过学习设计了解学习者行为","authors":"Hao Shen, Leming Liang, N. Law, Erik Hemberg, Una-May O’Reilly","doi":"10.1145/3386527.3405919","DOIUrl":null,"url":null,"abstract":"A goal of learning analytics is to inform and improve learning design. Previous studies have attempted to interpret learners' clickstream data based on learning science theories. Many of these interpretations are made without reference to the specific learning designs of the courses being analyzed. Here, we report on a learning design informed analytics exploration of an introductory MOOC on Computer Science and Python programming. The learning resources (videos) and practice resources (short exercises and problem sets) are analyzed according to the knowledge types and cognitive process levels respectively, both based on a revised Bloom's Taxonomy. A heat map visualization of the access intensity on a learner resource access transition matrix and social network analysis are used to analyze learners' behavior with respect to the different resource categories. The results show distinctively different patterns of access between groups of students with different course performance and different academic backgrounds.","PeriodicalId":20608,"journal":{"name":"Proceedings of the Seventh ACM Conference on Learning @ Scale","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Understanding Learner Behavior Through Learning Design Informed Learning Analytics\",\"authors\":\"Hao Shen, Leming Liang, N. Law, Erik Hemberg, Una-May O’Reilly\",\"doi\":\"10.1145/3386527.3405919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A goal of learning analytics is to inform and improve learning design. Previous studies have attempted to interpret learners' clickstream data based on learning science theories. Many of these interpretations are made without reference to the specific learning designs of the courses being analyzed. Here, we report on a learning design informed analytics exploration of an introductory MOOC on Computer Science and Python programming. The learning resources (videos) and practice resources (short exercises and problem sets) are analyzed according to the knowledge types and cognitive process levels respectively, both based on a revised Bloom's Taxonomy. A heat map visualization of the access intensity on a learner resource access transition matrix and social network analysis are used to analyze learners' behavior with respect to the different resource categories. The results show distinctively different patterns of access between groups of students with different course performance and different academic backgrounds.\",\"PeriodicalId\":20608,\"journal\":{\"name\":\"Proceedings of the Seventh ACM Conference on Learning @ Scale\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386527.3405919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386527.3405919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Understanding Learner Behavior Through Learning Design Informed Learning Analytics
A goal of learning analytics is to inform and improve learning design. Previous studies have attempted to interpret learners' clickstream data based on learning science theories. Many of these interpretations are made without reference to the specific learning designs of the courses being analyzed. Here, we report on a learning design informed analytics exploration of an introductory MOOC on Computer Science and Python programming. The learning resources (videos) and practice resources (short exercises and problem sets) are analyzed according to the knowledge types and cognitive process levels respectively, both based on a revised Bloom's Taxonomy. A heat map visualization of the access intensity on a learner resource access transition matrix and social network analysis are used to analyze learners' behavior with respect to the different resource categories. The results show distinctively different patterns of access between groups of students with different course performance and different academic backgrounds.