促进多关系分类中的元组传播

Lucantonio Ghionna, G. Greco
{"title":"促进多关系分类中的元组传播","authors":"Lucantonio Ghionna, G. Greco","doi":"10.1145/2076623.2076637","DOIUrl":null,"url":null,"abstract":"Multi-relational classification is a mining method aiming at building classifiers for the tuples in some target relation based on its own data as well as on the data possibly dispersed over other non-target relations, by exploiting the relationships among them formalized via foreign key constraints. While improving on the efficacy of the resulting classifiers, propagating data via the foreign key constraints deteriorates the scalability of the underlying algorithm. In the paper, various techniques are discussed to efficiently implement this propagation task, and hence to boost performances of current multi-relational classification algorithms. These techniques are based on suitable adaptations of state-of-the-art query optimization methods, and are conceived to be coupled with database management systems. A system prototype integrating all the techniques is illustrated, and results of experimental activity conducted on top of it are eventually discussed.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"1 1","pages":"106-114"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Boosting tuple propagation in multi-relational classification\",\"authors\":\"Lucantonio Ghionna, G. Greco\",\"doi\":\"10.1145/2076623.2076637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-relational classification is a mining method aiming at building classifiers for the tuples in some target relation based on its own data as well as on the data possibly dispersed over other non-target relations, by exploiting the relationships among them formalized via foreign key constraints. While improving on the efficacy of the resulting classifiers, propagating data via the foreign key constraints deteriorates the scalability of the underlying algorithm. In the paper, various techniques are discussed to efficiently implement this propagation task, and hence to boost performances of current multi-relational classification algorithms. These techniques are based on suitable adaptations of state-of-the-art query optimization methods, and are conceived to be coupled with database management systems. A system prototype integrating all the techniques is illustrated, and results of experimental activity conducted on top of it are eventually discussed.\",\"PeriodicalId\":93615,\"journal\":{\"name\":\"Proceedings. International Database Engineering and Applications Symposium\",\"volume\":\"1 1\",\"pages\":\"106-114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Database Engineering and Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2076623.2076637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2076623.2076637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多关系分类是一种挖掘方法,其目的是利用外键约束形式化的元组之间的关系,根据目标关系本身的数据,以及可能分散在其他非目标关系上的数据,为目标关系中的元组构建分类器。虽然提高了结果分类器的效率,但通过外键约束传播数据会降低底层算法的可伸缩性。本文讨论了各种技术来有效地实现这种传播任务,从而提高当前多关系分类算法的性能。这些技术基于对最先进的查询优化方法的适当调整,并被认为与数据库管理系统相结合。最后给出了一个集成了所有技术的系统原型,并讨论了在此基础上进行的实验活动的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boosting tuple propagation in multi-relational classification
Multi-relational classification is a mining method aiming at building classifiers for the tuples in some target relation based on its own data as well as on the data possibly dispersed over other non-target relations, by exploiting the relationships among them formalized via foreign key constraints. While improving on the efficacy of the resulting classifiers, propagating data via the foreign key constraints deteriorates the scalability of the underlying algorithm. In the paper, various techniques are discussed to efficiently implement this propagation task, and hence to boost performances of current multi-relational classification algorithms. These techniques are based on suitable adaptations of state-of-the-art query optimization methods, and are conceived to be coupled with database management systems. A system prototype integrating all the techniques is illustrated, and results of experimental activity conducted on top of it are eventually discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A method combining improved Mahalanobis distance and adversarial autoencoder to detect abnormal network traffic Proceedings of the International Database Engineered Applications Symposium Conference, IDEAS 2023, Heraklion, Crete, Greece, May 5-7, 2023 IDEAS'22: International Database Engineered Applications Symposium, Budapest, Hungary, August 22 - 24, 2022 IDEAS 2021: 25th International Database Engineering & Applications Symposium, Montreal, QC, Canada, July 14-16, 2021 IDEAS 2020: 24th International Database Engineering & Applications Symposium, Seoul, Republic of Korea, August 12-14, 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1