利用谷歌云平台的按需紧急高性能计算

Brandon Posey, Ada E. Deer, Wyatt Gorman, Vanessa July, Neeraj K. Kanhere, D. Speck, Boyd Wilson, A. Apon
{"title":"利用谷歌云平台的按需紧急高性能计算","authors":"Brandon Posey, Ada E. Deer, Wyatt Gorman, Vanessa July, Neeraj K. Kanhere, D. Speck, Boyd Wilson, A. Apon","doi":"10.1109/UrgentHPC49580.2019.00008","DOIUrl":null,"url":null,"abstract":"In this paper we describe how high performance computing in the Google Cloud Platform can be utilized in an urgent and emergency situation to process large amounts of traffic data efficiently and on demand. Our approach provides a solution to an urgent need for disaster management using massive data processing and high performance computing. The traffic data used in this demonstration is collected from the public camera systems on Interstate highways in the Southeast United States. Our solution launches a parallel processing system that is the size of a Top 5 supercomputer using the Google Cloud Platform. Results show that the parallel processing system can be launched in a few hours, that it is effective at fast processing of high volume data, and can be de-provisioned in a few hours. We processed 211TB of video utilizing 6,227,593 core hours over the span of about eight hours with an average cost of around $0.008 per vCPU hour, which is less than the cost of many on-premise HPC systems.","PeriodicalId":6723,"journal":{"name":"2019 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)","volume":"43 1","pages":"13-23"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On-Demand Urgent High Performance Computing Utilizing the Google Cloud Platform\",\"authors\":\"Brandon Posey, Ada E. Deer, Wyatt Gorman, Vanessa July, Neeraj K. Kanhere, D. Speck, Boyd Wilson, A. Apon\",\"doi\":\"10.1109/UrgentHPC49580.2019.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe how high performance computing in the Google Cloud Platform can be utilized in an urgent and emergency situation to process large amounts of traffic data efficiently and on demand. Our approach provides a solution to an urgent need for disaster management using massive data processing and high performance computing. The traffic data used in this demonstration is collected from the public camera systems on Interstate highways in the Southeast United States. Our solution launches a parallel processing system that is the size of a Top 5 supercomputer using the Google Cloud Platform. Results show that the parallel processing system can be launched in a few hours, that it is effective at fast processing of high volume data, and can be de-provisioned in a few hours. We processed 211TB of video utilizing 6,227,593 core hours over the span of about eight hours with an average cost of around $0.008 per vCPU hour, which is less than the cost of many on-premise HPC systems.\",\"PeriodicalId\":6723,\"journal\":{\"name\":\"2019 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)\",\"volume\":\"43 1\",\"pages\":\"13-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UrgentHPC49580.2019.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UrgentHPC49580.2019.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们描述了如何在紧急和紧急情况下利用谷歌云平台中的高性能计算来高效和按需处理大量交通数据。我们的方法为使用大规模数据处理和高性能计算的灾难管理的迫切需求提供了解决方案。本演示中使用的交通数据是从美国东南部州际公路上的公共摄像系统收集的。我们的解决方案启动了一个并行处理系统,其大小相当于使用谷歌云平台的Top 5超级计算机。结果表明,该并行处理系统可以在几个小时内启动,对大容量数据的快速处理是有效的,并且可以在几个小时内解除预置。我们在大约8小时的时间内使用6,227,593个核心小时处理了211TB的视频,平均成本约为每vCPU小时0.008美元,这比许多本地HPC系统的成本要低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-Demand Urgent High Performance Computing Utilizing the Google Cloud Platform
In this paper we describe how high performance computing in the Google Cloud Platform can be utilized in an urgent and emergency situation to process large amounts of traffic data efficiently and on demand. Our approach provides a solution to an urgent need for disaster management using massive data processing and high performance computing. The traffic data used in this demonstration is collected from the public camera systems on Interstate highways in the Southeast United States. Our solution launches a parallel processing system that is the size of a Top 5 supercomputer using the Google Cloud Platform. Results show that the parallel processing system can be launched in a few hours, that it is effective at fast processing of high volume data, and can be de-provisioned in a few hours. We processed 211TB of video utilizing 6,227,593 core hours over the span of about eight hours with an average cost of around $0.008 per vCPU hour, which is less than the cost of many on-premise HPC systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Copyright notice] Urgent Tsunami Computing On-Demand Urgent High Performance Computing Utilizing the Google Cloud Platform [Title page] An Interactive Data-Driven HPC System for Forecasting Weather, Wildland Fire, and Smoke
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1